Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 152]
|
|
Сложность: 4 Классы: 10,11
|
На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой.
На сторонах AB и AC угла BAC, равного
120o, как
на диаметрах построены полуокружности. В общую часть образовавшихся
полукругов вписана окружность максимального радиуса. Найдите радиус
этой окружности, если AB = 4, AC = 2.
Пусть
la ,
lb и
lc – длины биссектрис углов
A ,
B и
C треугольника
ABC , а
ma ,
mb и
mc – длины соответствующих медиан. Докажите, что
+ + >1
|
|
Сложность: 5 Классы: 10,11
|
На поверхности сферической планеты расположены четыре материка, отделённые друг от друга океаном. Назовем точку океана особой, если для нее найдутся не менее трёх ближайших (находящихся от нее на равных расстояниях) точек суши, причём все на разных материках. Какое наибольшее число особых точек может быть на
этой планете?
|
|
Сложность: 3- Классы: 10,11
|
Длина ребра правильного тетраэдра равна a. Через одну из вершин тетраэдра проведено треугольное сечение.
Докажите, что периметр P этого треугольника удовлетворяет неравенству P > 2a.
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 152]