Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 829]
Замкнутая пятизвенная ломаная образует равноугольную звезду (см. рис.).
Чему равен периметр внутреннего пятиугольника ABCDE, если длина исходной ломаной равна 1?
|
|
Сложность: 4 Классы: 10,11
|
На медианах треугольника как на диаметрах построены три окружности. Известно, что они попарно пересекаются. Пусть C1 – более удалённая от вершины C точка пересечения окружностей, построенных на медианах AM1 и BM2. Точки A1 и B1 определяются аналогично. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной
точке.
|
|
Сложность: 4 Классы: 10,11
|
Дана неравнобокая трапеция ABCD (AB || CD). Окружность, проходящая через точки A и B, пересекает боковые стороны трапеции в точках P и Q, а диагонали – в точках M и N. Докажите, что прямые PQ, MN и CD пересекаются в одной точке.
|
|
Сложность: 4 Классы: 8,9,10
|
Через вершины A, B, C треугольника ABC проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках A1, B1, C1 соответственно. Точки A2, B2, C2 симметричны точкам A1, B1, C1 относительно сторон BC, CA, AB соответственно. Докажите, что прямые AA2, BB2, CC2 пересекаются в одной точке.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Пусть точка $P$ лежит на описанной окружности треугольника $ABC$. Точка $A_1$ симметрична ортоцентру треугольника $PBC$ относительно
серединного перпендикуляра к $BC$. Точки $B_1$ и $C_1$ определяются
аналогично. Докажите, что точки $A_1$, $B_1$ и $C_1$ лежат на одной прямой.
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 829]