ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1274]      



Задача 52381

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В окружность вписан четырёхугольник ABCD, причём AB является диаметром окружности. Диагонали AC и BD пересекаются в точке M. Известно, что  BC = 3,  CM = ¾,  а площадь треугольника ABC втрое больше площади треугольника ACD. Найдите AM.

Прислать комментарий     Решение

Задача 52437

Темы:   [ Вписанный угол равен половине центрального ]
[ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 8,9

Из точки A проведены секущая и касательная к окружности радиуса R. Пусть B – точка касания, а D и C – точки пересечения секущей с окружностью, причём точка D лежит между A и C. Известно, что BD – биссектриса угла B треугольника ABC и её длина равна R. Найдите расстояние от точки A до центра окружности.

Прислать комментарий     Решение

Задача 52611

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Против большей стороны лежит больший угол ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9

Треугольники ABC и ADC имеют общую сторону AC; стороны AD и BC пересекаются в точке M. Углы B и D равны по 40°. Расстояние между вершинами D и B равно стороне AB,  ∠AMC = 70°.  Найдите углы треугольников ABC и ADC.

Прислать комментарий     Решение

Задача 52792

Темы:   [ Биссектриса делит дугу пополам ]
[ Теорема косинусов ]
[ Прямая Эйлера и окружность девяти точек ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  BC = 4,  AB = 2 .   Известно, что центр окружности, проходящей через середины сторон треугольника, лежит на биссектрисе угла C. Найдите AC.

Прислать комментарий     Решение

Задача 52943

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

На высоте CE, опущенной из вершины C прямоугольного треугольника ABC на гипотенузу AB, как на диаметре построена окружность, которая пересекает катет BC в точке K. Найдите площадь треугольника BKE, если катет BC равен a и угол BAC равен $ \alpha$.

Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1274]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .