ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1396]      



Задача 55111

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены высоты AD и CE. Найдите отношение площадей треугольников ABC и AED, если AB = 6, AC = 5, CB = 7.

Прислать комментарий     Решение


Задача 55119

Темы:   [ Отношение площадей подобных треугольников ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

AB — диаметр; BC и AC — хорды, причем $ \cup$ BC = 60o; D — точка пересечения продолжения диаметра AB и касательной CD. Найдите отношение площадей треугольников DCB и DCA.

Прислать комментарий     Решение


Задача 102465

Темы:   [ Площадь круга, сектора и сегмента ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

В круг радиуса 12 вписан угол величины 120o так, что центр круга лежит на биссектрисе угла. Укажите площадь части круга, расположенной вне угла.

Прислать комментарий     Решение


Задача 53293

Темы:   [ Формула Герона ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В параллелограмме со сторонами 2 и 4 проведена диагональ, равная 3. В каждый из получившихся треугольников вписано по окружности. Найдите расстояние между центрами окружностей.

Прислать комментарий     Решение


Задача 55009

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол A равен 45o, а угол C — острый. Из середины стороны BC опущен перпендикуляр NM на сторону AC. Площади треугольников NMC и ABC относятся, как 1:8. Найдите углы треугольника ABC.

Прислать комментарий     Решение


Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .