ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 829]      



Задача 66923

Темы:   [ Изогональное сопряжение ]
[ Биссектриса угла ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Уткин А.

В треугольнике $ABC$ $\angle A=60^{\circ}$, $AD$ – биссектриса. Построен равносторонний треугольник $PDQ$ с высотой $DA$. Прямые $PB$ и $QC$ пересекаются в точке $K$. Докажите, что $AK$ – симедиана треугольника $ABC$.
Прислать комментарий     Решение


Задача 64881

Темы:   [ Описанные четырехугольники ]
[ Три точки, лежащие на одной прямой ]
[ Инверсия помогает решить задачу ]
[ Точка Лемуана ]
Сложность: 5-
Классы: 10,11

Четырёхугольник ABCD описан около окружности с центром I. Касательные к описанной окружности треугольника AIC в точках A, C пересекаются в точке X. Касательные к описанной окружности треугольника BID в точках B, D пересекаются в точке Y. Докажите, что точки X, I, Y лежат на одной прямой.

Прислать комментарий     Решение

Задача 65021

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства симметрий и осей симметрии ]
[ Проективная геометрия (прочее) ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Вписанная окружность остроугольного треугольника ABC касается его сторон AB, BC, CA в точках C1, A1, B1 соответственно. Пусть A2, B2 – середины отрезков B1C1, A1C1 соответственно, O – центр описанной окружности треугольника ABC, P – одна из точек пересечения прямой CO с вписанной окружностью. Прямые PA2 и PB2 вторично пересекают вписанную окружность в точках A' и B'. Докажите, что прямые AA' и BB' пересекаются на высоте треугольника, опущенной на AB.

Прислать комментарий     Решение

Задача 66226

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 9,10,11

В треугольнике ABC прямая m касается вписанной окружности ω. Прямые, проходящие через центр I окружности ω и перпендикулярные AI, BI, CI, пересекают прямую m в точках A', B', C' соответственно. Докажите, что прямые AA', BB', CC' пересекаются в одной точке.

Прислать комментарий     Решение

Задача 115873

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Прямая Симсона ]
[ Теорема Карно ]
Сложность: 5-
Классы: 8,9,10,11

Дан треугольник ABC и точки X, Y, не лежащие на его описанной окружности Ω. Пусть A1, B1, C1 – проекции X на BC, CA, AB, а A2, B2, C2 – проекции Y. Докажите, что перпендикуляры, опущенные из A1, B1, C1 на, соответственно, B2C2, C2A2, A2B2, пересекаются в одной точке тогда и только тогда, когда прямая XY проходит через центр Ω.

Прислать комментарий     Решение

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .