Страница:
<< 84 85 86 87
88 89 90 >> [Всего задач: 499]
На сторонах AB, AC и BC правильного треугольника ABC
расположены соответственно точки C1, B1 и A1, причём треугольник A1B1C1 является правильным. Высота BD треугольника ABC пересекает сторону A1C1 в точке O. Найдите отношение BO/BD, если A1B1/AB = n.
|
|
Сложность: 4- Классы: 9,10
|
Остроугольный треугольник ABC вписан в окружность Ω. Касательные,
проведённые к Ω в точках B и C, пересекаются в точке P.
Точки D и E – основания перпендикуляров, опущенных из точки P на прямые AB и AC. Докажите, что точка пересечения высот треугольника ADE является серединой отрезка BC.
|
|
Сложность: 4- Классы: 9,10,11
|
На основании AC равнобедренного треугольника ABC взяли произвольную точку X, а на боковых сторонах – точки P и Q так, что XPBQ – параллелограмм. Докажите, что точка Y, симметричная точке X относительно PQ, лежит на описанной окружности треугольника ABC.
|
|
Сложность: 4- Классы: 8,9,10
|
На стороне BE правильного треугольника ABE вне его построен ромб BCDE. Отрезки AC и BD пересекаются в точке F. Докажите, что AF < BD.
|
|
Сложность: 4- Классы: 9,10,11
|
Внутри равнобокой трапеции ABCD с основаниями BC и AD расположена окружность ω с центром I, касающаяся отрезков AB, CD и DA. Описанная окружность треугольника BIC вторично пересекает сторону AB в точке E. Докажите, что прямая CE касается окружности ω.
Страница:
<< 84 85 86 87
88 89 90 >> [Всего задач: 499]