ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных. Можно ли расставить по кругу семь целых неотрицательных чисел так, чтобы сумма каких-то трёх расположенных подряд чисел была равна 1, каких-то трёх подряд расположенных – 2, ... , каких-то трёх подряд расположенных – 7? Докажите, что a²pq + b²qr + c²rp ≤ 0, если a, b, c – стороны треугольника; а p, q, r – любые числа, удовлетворяющие условию p + q + r = 0. Докажите, что для любого многочлена P(x) степени m существует единственный многочлен Q(x) степени m + 1 , для которого ΔQ(x) = P(x) и Q(0) = 0. Восстановите а) треугольник; б) пятиугольник по серединам его сторон. Постройте прямоугольный треугольник по гипотенузе и высоте, опущенной из вершины прямого угла на гипотенузу. Школьник хочет вырезать из квадрата размером 2n×2n наибольшее количество прямоугольников размером 1×(n + 1). Найти это количество для каждого натурального значения n. В трапеции ABCD даны основания AD = 12 и BC = 8. На продолжении стороны BC выбрана такая точка M, что CM = 2,4.
Пусть M — основание перпендикуляра, опущенного из вершины D параллелограмма ABCD на диагональ AC. Докажите, что перпендикуляры к прямым AB и BC, проведённые через точки A и C соответственно, пересекутся на прямой DM.
Решите уравнение 2 sin πx/2 – 2 cos πx = x5 + 10x – 54. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 496]
Постройте окружность данного радиуса, проходящую через две данные точки.
Постройте прямоугольный треугольник по гипотенузе и высоте, опущенной из вершины прямого угла на гипотенузу.
Из середины гипотенузы восставлен перпендикуляр до пересечения с катетом, и полученная точка соединена с концом другого катета отрезком, который делит угол треугольника в отношении 2 : 5 (меньшая часть – при гипотенузе). Найдите этот угол.
На боковых сторонах AB и AC равнобедренного треугольника ABC построены вне его равные треугольники AMB и ANC (AM = AN).
Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 496]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке