ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В трапеции KLMN известно, что  LM || KN,  ∠LMN = 90°. Прямая, перпендикулярная стороне KL, пересекает сторону KL в точке A, а сторону MN – в точке B. Известно также, что  KB = a,  AN = b,  а расстояние от точки L до прямой KB равно c. Найдите расстояние от точки M до прямой AN.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 303]      



Задача 102502

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

В трапеции KLMN известно, что  LM || KN,  ∠LMN = 90°. Прямая, перпендикулярная стороне KL, пересекает сторону KL в точке A, а сторону MN – в точке B. Известно также, что  KB = a,  AN = b,  а расстояние от точки L до прямой KB равно c. Найдите расстояние от точки M до прямой AN.

Прислать комментарий     Решение

Задача 102505

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

Середины высот треугольника ABC лежат на одной прямой. Наибольшая сторона треугольника  AB = 10 см.
Какое максимальное значение может принимать площадь треугольника ABC?

Прислать комментарий     Решение

Задача 105219

Темы:   [ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ - прямая или отрезок ]
Сложность: 4-
Классы: 8,9

На биссектрисе данного угла фиксирована точка. Рассматриваются всевозможные равнобедренные треугольники, у которых вершина находится в этой точке, а концы оснований лежат на разных сторонах этого угла. Найти геометрическое место середин оснований таких треугольников.

Прислать комментарий     Решение

Задача 108121

Темы:   [ Вспомогательная окружность ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанный угол, опирающийся на диаметр ]
[ Четыре точки, лежащие на одной окружности ]
[ Две касательные, проведенные из одной точки ]
[ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 9,10,11

В окружность вписан прямоугольный треугольник ABC с гипотенузой AB. Пусть K – середина дуги BC, не содержащей точку A, N – середина отрезка AC, M – точка пересечения луча KN с окружностью. В точках A и C проведены касательные к окружности, которые пересекаются в точке E. Докажите, что
EMK = 90°.

Прислать комментарий     Решение

Задача 115720

Темы:   [ Ортоцентр и ортотреугольник ]
[ Подобные треугольники (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4-
Классы: 8,9

Отрезки AA1, BB1 и CC1 – высоты треугольника ABC. Найдите углы этого треугольника, если известно, что он подобен треугольнику A1B1C1.

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 303]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .