Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.

Вниз   Решение


Рёбра прямоугольного параллелепипеда равны a , b и c . Найдите углы между его диагоналями.

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE диагонали AC и EC являются биссектрисами углов при вершинах A и E соответственно,  ∠B = 125°,  ∠D = 55°,  а площадь пятиугольника ABCDE равна 14. Найдите площадь треугольника ACE.

ВверхВниз   Решение


Точки Q и R расположены соответственно на сторонах MN и MP треугольника MNP, причём MQ = 3, MR = 4. Найдите площадь треугольника MQR, если MN = 4, MP = 5, NP = 6.

ВверхВниз   Решение


Существует ли невыпуклый пятиугольник, никакие две из пяти диагоналей которого не имеют общих точек (кроме вершин)?

ВверхВниз   Решение


Диагональ прямоугольного параллелепипеда равна l и образует с плоскостью основания угол α . Найдите площадь боковой поверхности параллелепипеда, если площадь его основания равна S .

ВверхВниз   Решение


Пусть Oa, Ob и Oc – центры описанных окружностей треугольников PBC, PCA и PAB.
Докажите, что если точки Oa и Ob лежат на прямых PA и PB, то точка Oc лежит на прямой PC.

ВверхВниз   Решение


Рёбра прямоугольного параллелепипеда равны 2, 3, и 4. Найдите угол между его диагоналями.

ВверхВниз   Решение


В трапеции ABCD с меньшим основанием BC и площадью, равной 2, прямые BC и AD касаются окружности диаметром в точках B и D соответственно. Боковые стороны трапеции AB и CD пересекают окружность в точках M и N соответственно. Длина MN равна 1. Найдите величину угла MBN и длину основания AD .

ВверхВниз   Решение


Куб размером 3×3×3 состоит из 27 единичных кубиков. Можно ли побывать в каждом кубике по одному разу, двигаясь следующим образом: из кубика можно пройти в любой кубик, имеющий с ним общую грань, причём запрещено ходить два раза подряд в одном направлении?

ВверхВниз   Решение


Автор: Фольклор

В описанном пятиугольнике ABCDE диагонали AD и CE пересекаются в центре O вписанной окружности.
Докажите, что отрезок BO и сторона DE перпендикулярны.

ВверхВниз   Решение


Найдите ребро куба, вписанного в сферу радиуса R.

ВверхВниз   Решение


Пусть p , q и r – площади трёх граней прямоугольного параллелепипеда. Найдите его объём.

ВверхВниз   Решение


Медианой пятиугольника ABCDE назовём отрезок, соединяющий вершину с серединой противолежащей стороны (A – с серединой CD, B – с серединой DE и т.д.). Докажите, что если четыре медианы выпуклого пятиугольника перпендикулярны сторонам, к которым они проведены, то таким же свойством обладает и пятая медиана.

ВверхВниз   Решение


В пятиугольнике A1A2A3A4A5 проведены биссектрисы l1, l2, ..., l5 углов A1, A2, ..., A5 соответственно. Биссектрисы l1 и l2 пересекаются в точке B1, l2 и l3 – в точке B2 и т.д., ..., l5 и l1 пересекаются в точке B5. Может ли пятиугольник B1B2B3B4B5 оказаться выпуклым?

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE диагонали AD и BD являются биссектрисами углов при вершинах A и B соответственно,  ∠C = 115°,  ∠E = 65°,  а площадь треугольника ABD равна 13. Найдите площадь пятиугольника ABCDE.

ВверхВниз   Решение


Из квадрата 5×5 вырезали центральную клетку. Разрежьте получившуюся фигуру на две части, в которые можно завернуть куб 2×2×2.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 348]      



Задача 103835

Темы:   [ Куб ]
[ Наглядная геометрия в пространстве ]
[ Свойства разверток ]
Сложность: 3
Классы: 7

Из квадрата 5×5 вырезали центральную клетку. Разрежьте получившуюся фигуру на две части, в которые можно завернуть куб 2×2×2.
Прислать комментарий     Решение


Задача 103892

Темы:   [ Куб ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 3
Классы: 7,8

Куб размером 3×3×3 состоит из 27 единичных кубиков. Можно ли побывать в каждом кубике по одному разу, двигаясь следующим образом: из кубика можно пройти в любой кубик, имеющий с ним общую грань, причём запрещено ходить два раза подряд в одном направлении?
Прислать комментарий     Решение


Задача 109079

Темы:   [ Параллелепипеды (прочее) ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Докажите, что если сечение параллелепипеда плоскостью является многоугольником с числом сторон, большим трёх, то у этого многоугольника есть параллельные стороны.
Прислать комментарий     Решение


Задача 109102

Темы:   [ Куб ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Докажите, что в кубе $ABCDA_1B_1C_1D_1$ прямые $AC_1$ и $BD$ перпендикулярны.
Прислать комментарий     Решение


Задача 109291

Темы:   [ Прямоугольные параллелепипеды ]
[ Скалярное произведение ]
Сложность: 3
Классы: 10,11

Рёбра прямоугольного параллелепипеда равны a , b и c . Найдите углы между его диагоналями.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 348]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .