Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую — в точках C и D. Докажите, что AB| CD.

Вниз   Решение


Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o .

ВверхВниз   Решение


Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r .

ВверхВниз   Решение


Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - HA и HB; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AHA, BHB, осью абсцисс и дугой AB.

ВверхВниз   Решение


На доске написаны в порядке возрастания два натуральных числа x и y  (x ≤ y).  Петя записывает на бумажке x² (квадрат первого числа), а затем заменяет числа на доске числами x и  y – x,  записывая их в порядке возрастания. С новыми числами на доске он проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?

ВверхВниз   Решение


Автор: Храбров А.

Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число;  an+1 = ⅕ an,  если an делится на 5;
an+1 = [ an],  если an не делится на 5. Докажите, что начиная с некоторого члена последовательность an возрастает.

ВверхВниз   Решение


Докажите, что через две параллельные прямые можно провести единственную плоскость.

ВверхВниз   Решение


Двенадцать стульев стоят в ряд. Иногда на один из свободных стульев садится человек. При этом ровно один из его соседей (если они были) встаёт и уходит. Какое наибольшее количество человек могут одновременно оказаться сидящими, если вначале все стулья были пустыми?

ВверхВниз   Решение


См. задачу 4 для 8 класса. Кроме того, доказать, что если длины отрезков a1,..., a6 удовлетворяют соотношениям: a1 - a4 = a5 - a2 = a3 - a6, то из этих отрезков можно построить равноугольный шестиугольник.

ВверхВниз   Решение


Противоположные стороны выпуклого шестиугольника ABCDEF попарно параллельны. Докажите, что:
а) площадь треугольника ACE составляет не менее половины площади шестиугольника.
б) площади треугольников ACE и BDF равны.

ВверхВниз   Решение


На боковом ребре AB пирамиды взяты точки K и M , причём AK = BM . Через эти точки проведены сечения, параллельные основанию пирамиды. Известно, что сумма площадей этих сечений составляет площади основания пирамиды. Найдите отношение KM:AB .

ВверхВниз   Решение


100 ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине некоторым (кому хочет) из остальных. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

ВверхВниз   Решение


Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.

ВверхВниз   Решение


На плоскости даны точки A и B и прямая l. По какой траектории движется точка пересечения медиан треугольников ABC, если точка C движется по прямой l?

ВверхВниз   Решение


В остроугольном треугольнике $ABC$ точка $M$ – середина меньшей дуги $BC$ описанной окружности. Окружность $\omega$ касается сторон $AB$, $AC$ в точках $P$, $Q$ соответственно и проходит через точку $M$. Докажите,что $BP+CQ=PQ$.

ВверхВниз   Решение


Турист вышел утром из палатки, прошел 10 км на юг, потом 10 км на восток, 10 км на север и оказался у своей палатки. В палатке он обнаружил медведя.
а) Какого цвета был медведь?
б) Мог ли там оказаться не медведь, а пингвин?

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 110285

Темы:   [ Сфера, описанная около пирамиды ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3
Классы: 10,11

Основанием пирамиды служит многоугольник, около которого можно описать окружность. Докажите, что около этой пирамиды можно описать сферу. Найдите радиус этой сферы, если радиус окружности, описанной около основания пирамиды, равен r, высота равна h, а основание высоты совпадает с вершиной основания пирамиды.
Прислать комментарий     Решение


Задача 35086

Темы:   [ Окружности на сфере ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Итак, Чукча выходит каждый день на охоту по следующему маршруту: 10 км на юг, 10 км на восток, 10 км на север (На запад чукча не ходит) И хоп! Оказывается перед своим чумом. "Однако!" говорит чукча. Теперь вопрос: найти Геометрическое Место Точек, где может находиться чум чукчи.
Прислать комментарий     Решение


Задача 78071

Темы:   [ Высота пирамиды (тетраэдра) ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3+
Классы: 10,11

Даны положительные числа h, s1, s2 и расположенный в пространстве треугольник ABC. Сколькими способами можно выбрать точку D так, чтобы в тетраэдре ABCD высота, опущенная из вершины D, была равна h, а площади граней ACD и BCD соответственно s1 и s2 (исследовать все возможные случаи)?
Прислать комментарий     Решение


Задача 104040

Темы:   [ Окружности на сфере ]
[ ГМТ в пространстве (прочее) ]
Сложность: 4
Классы: 7,8,9,10

Турист вышел утром из палатки, прошел 10 км на юг, потом 10 км на восток, 10 км на север и оказался у своей палатки. В палатке он обнаружил медведя.
а) Какого цвета был медведь?
б) Мог ли там оказаться не медведь, а пингвин?
Прислать комментарий     Решение


Задача 109170

Темы:   [ Вычисление объемов ]
[ ГМТ в пространстве (прочее) ]
[ Объем круглых тел ]
Сложность: 5-
Классы: 10,11

На плоскости дан квадрат со стороной a . Найти объём тела, состоящего из всех точек пространства, расстояние от которых до части плоскости, ограниченной квадратом, не больше a .
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .