ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что AB = KC. |
Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 1275]
Две окружности касаются внешним образом в точке A. Прямая, проходящая
через точку A, пересекает первую окружность в точке B, а вторую
окружность – в точке C. Касательная в точке B к первой окружности пересекает вторую окружность в точках D и E (точка D лежит между B и E). Известно, что
Две окружности касаются внешним образом в точке K. Прямая, проходящая через точку K, пересекает первую окружность в точке L, а вторую – в точке M. Касательная к первой окружности, проходящая через точку L, пересекает вторую окружность в точках A и B (точка B лежит между A и L). Известно, что BM = 3 и KM = 1. Найдите длину отрезка KL и расстояние от точки L до центра окружности, касающейся отрезка KB и продолжений отрезков AB и AK за точки B и K соответственно.
Середины высот треугольника ABC лежат на одной прямой. Наибольшая сторона треугольника AB = 10 см.
Внутри вписанного четырёхугольника ABCD существует точка K, расстояния от которой до сторон ABCD пропорциональны этим сторонам.
Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что AB = KC.
Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 1275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|