ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На стороне AB треугольника ABC взята точка P, отличная от точек A и B, а на сторонах BC и AC – точки Q и R соответственно, причём четырёхугольник PQCR – параллелограмм. Пусть отрезки AQ и PR пересекаются в точке M, а отрезки BR и PQ – в точке N. Докажите, что сумма площадей треугольников AMP и BNP равна площади треугольника CQR. Решение |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 829]
В треугольнике ABC на сторонах AB, BC и AC взяты соответственно точки M, K и L так, что прямая MK параллельна прямой AC и ML параллельна BC. При этом отрезок BL пересекает отрезок MK в точке P, а AK пересекает ML в точке Q. Докажите, что отрезки PQ и AB параллельны.
Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины
которых лежат на окружности.
Между двумя параллельными прямыми расположили окружность радиуса 1, касающуюся обеих прямых, и равнобедренный треугольник, основание которого лежит на одной из прямых, а вершина – на другой. Известно, что треугольник и окружность имеют ровно одну общую точку и что эта точка лежит на вписанной окружности треугольника. Найдите радиус вписанной окружности треугольника.
Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)
На стороне AB треугольника ABC взята точка P, отличная от точек A и B, а на сторонах BC и AC – точки Q и R соответственно, причём четырёхугольник PQCR – параллелограмм. Пусть отрезки AQ и PR пересекаются в точке M, а отрезки BR и PQ – в точке N. Докажите, что сумма площадей треугольников AMP и BNP равна площади треугольника CQR.
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|