ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что если (x+)(y+)=1 , то x+y=0 .

Вниз   Решение


Площадь равнобедренной трапеции, описанной около окружности, равна S. Найдите среднюю линию трапеции, если острый угол при её основании равен $ \alpha$.

ВверхВниз   Решение


Автор: Фольклор

Решите уравнение:   .

ВверхВниз   Решение


Имеется бесконечная шахматная доска. Обозначим через  (a, b)  поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля  (a, b)  может сделать ход на любое из восьми полей:  (a ± m, b ± n),  (a ± n, b ± m),  где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.

ВверхВниз   Решение


Число n! разложено в произведение простых чисел:     Докажите равенство  

ВверхВниз   Решение


Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.

Докажите, что  ∠APB = ∠CQD.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 149]      



Задача 108109

Темы:   [ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.

Докажите, что  ∠APB = ∠CQD.

Прислать комментарий     Решение

Задача 110786

Темы:   [ Пересекающиеся окружности ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 7,8,9

Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что  BX = BY.

Прислать комментарий     Решение

Задача 116173

Темы:   [ Пересекающиеся окружности ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 3+
Классы: 9,10,11

Две окружности пересекаются в точках P и Q. Tочка A лежит на первой окружности, но вне второй. Прямые AP и AQ пересекают вторую окружность в точках B и C соответственно. Укажите положение точки A, при котором треугольник ABC имеет наибольшую площадь.

Прислать комментарий     Решение

Задача 53716

Темы:   [ Пересекающиеся окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. Прямая, проходящая через точку A, пересекает окружности в точках M и N, отличных от A, а параллельная ей прямая, проходящая через B, — соответственно в точках P и Q, отличных от B. Докажите, что MN = PQ.

Прислать комментарий     Решение


Задача 54132

Темы:   [ Пересекающиеся окружности ]
[ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите модуль разности отрезков BC и BD, если расстояние между центрами окружностей равно a, а центры окружностей лежат по одну сторону от общей хорды AB.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .