Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

В треугольнике ABC медианы AA' , BB' и CC' продлили до пересечения с описанной окружностью в точках A0 , B0 и C0 соответственно. Известно, что точка M пересечения медиан треугольника ABC делит отрезок AA0 пополам. Докажите, что треугольник A0B0C0 – равнобедренный.

Вниз   Решение


В треугольнике ABC c углом A, равным 45°, проведена медиана AM. Прямая b симметрична прямой AM относительно высоты BB1, а прямая c симметрична прямой AM относительно высоты CC1. Прямые b и c пересеклись в точке X. Докажите, что  AX = BC.

ВверхВниз   Решение


В трапеции ABCD с большим основанием BC и площадью, равной 4 , прямые BC и AD касаются окружности диаметром 2 в точках B и D соответственно. Боковые стороны трапеции AB и CD пересекают окружность в точках M и N соответственно. Длина MN равна . Найдите величину угла MDN и длину основания BC .

ВверхВниз   Решение


Пусть O – центр описанной окружности остроугольного неравнобедренного треугольника ABC, точка C1 симметрична C относительно O, D – середина стороны AB, K – центр описанной окружности треугольника ODC1. Докажите, что точка O делит пополам отрезок прямой OK, лежащий внутри угла ACB.

ВверхВниз   Решение


Автор: Фольклор

Есть тысяча билетов с номерами 000, 001, ..., 999 и сто ящиков с номерами 00, 01, ..., 99. Билет разрешается опустить в ящик, если номер ящика может быть получен из номера билета вычеркиванием одной из цифр. Можно ли разложить все билеты в 50 ящиков?

ВверхВниз   Решение


Докажите, что прямые  y = k1x + l1  и  y = k2x + l2  параллельны тогда и только тогда, когда   k1 = k2  и  l1l2.

ВверхВниз   Решение


Автор: Шноль Д.Э.

В четырехугольниках $ABCD$ и $A_1B_1C_1D_1$ равны соответствующие углы. Кроме того, $AB=A_1B_1$, $AC=A_1C_1$, $BD=B_1D_1$. Обязательно ли четырехугольники $ABCD$ и $A_1B_1C_1D_1$ равны?

ВверхВниз   Решение


На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что  AP = CQ  и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что  RX = RY.

ВверхВниз   Решение


Имеется набор гирь со следующими свойствами:

  1. В нем есть 5 гирь, попарно различных по весу.
  2. Для любых двух гирь найдутся две другие гири того же суммарного веса.
Какое наименьшее число гирь может быть в этом наборе?

ВверхВниз   Решение


В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.

ВверхВниз   Решение


Дан четырёхугольник ABCD, вписанный в окружность ω. Касательная к ω, проведённая через точку A, пересекает продолжение стороны BC за точку B в точке K, а касательная к ω, проведённая через точку B, пересекает продолжение стороны AD за точку A в точке M. Известно, что  AM = AD  и  BK = BC.  Докажите, что ABCD – трапеция.

ВверхВниз   Решение


Отрезок AB является диаметром окружности. Вторая окружность с центром в точке B имеет радиус, равный 2, и пересекается с первой окружностью в точках C и D. Хорда CE второй окружности является частью касательной к первой окружности и равна 3. Найдите радиус первой окружности.

ВверхВниз   Решение


Пусть a1, a2, ..., a10 – натуральные числа,  a1 < a2 < ... < a10.  Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
Докажите, что  a10 > 500.

ВверхВниз   Решение


Автор: Анджанс А.

Даны n точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?

ВверхВниз   Решение


Автор: Лифшиц Ю.

Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).

ВверхВниз   Решение


Приведённый квадратный трёхчлен с целыми коэффициентами в трёх последовательных целых точках принимает простые значения.
Докажите, что он принимает простое значение по крайней мере еще в одной целой точке.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность, M – точка пересечения его диагоналей, O1 и O2 – центры вписанных окружностей треугольников ABM и CMD соответственно, K – середина дуги AD, не содержащей точек B и C,  ∠O1KO2 = 60°,  KO1 = 10.  Найдите O1O2.

ВверхВниз   Решение


Вдоль стены круглой башни по часовой стрелке ходят два стражника, причём первый из них — вдвое быстрее второго. В этой стене, имеющей длину 1, проделаны бойницы. Система бойниц называется надёжной, если в каждый момент времени хотя бы один из стражников находится возле бойницы.

а) Какую наименьшую длину может иметь бойница, если система, состоящая только из этой бойницы, надежна?

б) Докажите, что суммарная длина бойниц любой надёжной системы больше 1/2.

в) Докажите, что для любого числа s>1/2 существует надёжная система бойниц с суммарной длиной, меньшей s.

ВверхВниз   Решение


В трапеции ABCD диагонали AC и BD пересекаются в точке O и перпендикулярны боковым сторонам. Продолжения боковых сторон пересекаются в точке E. Найдите площади треугольников EAD и COD, если известно, что основание AD = 6 и sin$ \angle$CDA = $ {\frac{4}{5}}$.

ВверхВниз   Решение


Автор: Сонкин М.

На медиане CD треугольника ABC отмечена точка E. Окружность S1, проходящая через точку E и касающаяся прямой AB в точке A, пересекает сторону AC в точке M. Окружность S2, проходящая через точку E и касающаяся прямой AB в точке B, пересекает сторону BC в точке N. Докажите, что описанная окружность треугольника CMN касается окружностей S1 и S2.

Вверх   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 772]      



Задача 67079

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теоремы Чевы и Менелая ]
[ Отношение, в котором биссектриса делит сторону ]
[ Радикальная ось ]
Сложность: 4
Классы: 9,10,11

Дан неравнобедренный треугольник $ABC$. Выберем произвольную окружность ω, касающуюся описанной окружности Ω треугольника $ABC$ внутренним образом в точке $B$ и не пересекающую прямую $AC$. Отметим на ω точки $P$ и $Q$ так, чтобы прямые $AP$ и $CQ$ касались ω, а отрезки $AP$ и $CQ$ пересекались внутри треугольника $ABC$. Докажите, что все полученные таким образом прямые $PQ$ проходят через одну фиксированную точку, не зависящую от выбора окружности ω.

Прислать комментарий     Решение

Задача 108087

Темы:   [ Две касательные, проведенные из одной точки ]
[ Средняя линия треугольника ]
[ Вписанные и описанные окружности ]
[ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4
Классы: 8,9

Вписанная окружность треугольника ABC касается сторон AB и AC в точках P и Q соответственно. Пусть RS – средняя линия треугольника, параллельная AB, T – точка пересечения прямых PQ и RS. Докажите, что T лежит на биссектрисе угла B треугольника.

Прислать комментарий     Решение

Задача 108123

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.

Прислать комментарий     Решение

Задача 108137

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема синусов ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Трапеции (прочее) ]
Сложность: 4
Классы: 9,10

Дан четырёхугольник ABCD, вписанный в окружность ω. Касательная к ω, проведённая через точку A, пересекает продолжение стороны BC за точку B в точке K, а касательная к ω, проведённая через точку B, пересекает продолжение стороны AD за точку A в точке M. Известно, что  AM = AD  и  BK = BC.  Докажите, что ABCD – трапеция.

Прислать комментарий     Решение

Задача 108146

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

На медиане CD треугольника ABC отмечена точка E. Окружность S1, проходящая через точку E и касающаяся прямой AB в точке A, пересекает сторону AC в точке M. Окружность S2, проходящая через точку E и касающаяся прямой AB в точке B, пересекает сторону BC в точке N. Докажите, что описанная окружность треугольника CMN касается окружностей S1 и S2.

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .