ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На стороне AB параллелограмма ABCD (или на её продолжении) взята точка M, для которой ∠MAD = ∠AMO, где O – точка пересечения диагоналей параллелограмма. Докажите, что MD = MC. Решение |
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 2247]
Четырёхугольник ABCD вписанный, M – точка пересечения прямых AB и CD, N – точка пересечения прямых BC и AD. Известно, что BM = DN.
На стороне AB параллелограмма ABCD (или на её продолжении) взята точка M, для которой ∠MAD = ∠AMO, где O – точка пересечения диагоналей параллелограмма. Докажите, что MD = MC.
На сторонах AB, BC, CD, DA параллелограмма ABCD взяты соответственно точки M, N, K, L, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что KLMN – параллелограмм, причём его центр совпадает с центром параллелограмма ABCD.
На боковых сторонах AB и CD трапеции ABCD отмечены точки P и Q так, что прямая PQ параллельна AD, а отрезок PQ делится диагоналями трапеции на три равные части. Найдите длину оонования BC, если известно, что AD = a, PQ = m, а точка пересечения диагоналей трапеции лежит внутри четырёхугольника BPCQ.
Найти равнобедренные трапеции, которые разбиваются диагональю на два равнобедренных треугольника.
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|