ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что для любого натурального N существует N точек, никакие три из которых не лежат на одной прямой и все попарные расстояния между которыми являются целыми числами.

Вниз   Решение


Даны две окружности S1, S2 и прямая l. Проведите прямую l1, параллельную прямой l, так, чтобы:
а) расстояние между точками пересечения l1 с окружностями S1 и S2 имело заданную величину a;
б) S1 и S2 высекали на l1 равные хорды;
в) S1 и S2 высекали на l1 хорды, сумма (или разность) длин которых имела бы заданную величину a.

ВверхВниз   Решение


Автор: Шень А.Х.

Будем называть "размером" прямоугольного параллелепипеда сумму трёх его измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?

ВверхВниз   Решение


Прямая l касается вневписанной окружности треугольника ABC, касающейся стороны BC. Пусть $ \delta_{a}^{}$, $ \delta_{b}^{}$, $ \delta_{c}^{}$ — расстояния от прямой l до точек A, B, C с учетом знака (расстояние положительно, если точка и центр вневписанной окружности лежат по одну сторону от прямой l; в противном случае расстояние отрциательно). Докажите, что - a$ \delta_{a}^{}$ + b$ \delta_{b}^{}$ + c$ \delta_{c}^{}$ = 2SABC.

ВверхВниз   Решение


Каждое из рёбер полного графа с 6 вершинами покрашено в один из двух цветов.
Докажите, что есть три вершины, все рёбра между которыми – одного цвета.

ВверхВниз   Решение


Пусть a , b и c – стороны параллелепипеда, d – одна из его диагоналей. Докажите, что a2 + b2 + c2 d2 .

ВверхВниз   Решение


Дан угол ABC и прямая l. Постройте прямую, параллельную прямой l, на которой стороны угла ABC высекают отрезок данной длины a.

ВверхВниз   Решение


Автор: Сонкин М.

На стороне AB треугольника ABC выбрана точка D . Окружность, описанная около треугольника BCD , пересекает сторону AC в точке M , а окружность, описанная около треугольника ACD , пересекает сторону BC в точке N (точки M и N отличны от точки C ). Пусть O – центр описанной окружности треугольника CMN . Докажите, что прямая OD перпендикулярна стороне AB .

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69]      



Задача 58098

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5
Классы: 8,9,10

На отрезке длиной 1 закрашено несколько отрезков, причем расстояние между любыми двумя закрашенными точками не равно 0, 1. Докажите, что сумма длин закрашенных отрезков не превосходит 0, 5.
Прислать комментарий     Решение


Задача 116141

Темы:   [ Подобные треугольники (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
[ Вписанные и описанные окружности ]
Сложность: 5
Классы: 10,11

Дан треугольник ABC и точки P и Q. Известно, что треугольники, образованные проекциями P и Q на стороны ABC, подобны (соответствуют друг другу вершины, лежащие на одних и тех же сторонах исходного треугольника). Докажите, что прямая PQ проходит через центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 108246

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
[ Вписанные и описанные окружности ]
[ Векторы помогают решить задачу ]
[ Вписанный угол равен половине центрального ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5+
Классы: 9,10,11

Автор: Сонкин М.

На стороне AB треугольника ABC выбрана точка D . Окружность, описанная около треугольника BCD , пересекает сторону AC в точке M , а окружность, описанная около треугольника ACD , пересекает сторону BC в точке N (точки M и N отличны от точки C ). Пусть O – центр описанной окружности треугольника CMN . Докажите, что прямая OD перпендикулярна стороне AB .
Прислать комментарий     Решение


Задача 110779

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Симметрия помогает решить задачу ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла ]
[ Гомотетичные многоугольники ]
Сложность: 5+
Классы: 10

Проекции точки X на стороны четырёхугольника ABCD лежат на одной окружности. Y – точка, симметричная X относительно центра этой окружности. Докажите, что проекции точки B на прямые AX, XC, CY, YA также лежат на одной окружности.

Прислать комментарий     Решение

Задача 109732

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 6+
Классы: 9,10,11

На плоскости даны два таких конечных набора P1 и P2 выпуклых многоугольников, что любые два многоугольника из разных наборов имеют общую точку и в каждом из двух наборов P1 и P2 есть пара непересекающихся многоугольников. Докажите, что существует прямая, пересекающая все многоугольники обоих наборов.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .