Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Два правильных многоугольника с периметрами a и b описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.

Вниз   Решение


Две вершины квадрата расположены на гипотенузе равнобедренного прямоугольного треугольника, а две другие – на катетах.
Найдите сторону квадрата, если гипотенуза равна a.

ВверхВниз   Решение


Докажите, что площадь параллелограмма произведению двух его соседних сторон на синус угла между ними, т.е.

S = ab sin$\displaystyle \gamma$,

где a и b — соседние стороны параллелограмма, $ \gamma$ — угол между ними.

ВверхВниз   Решение


В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:
  а) за 5 или менее;
  б) за 4 или менее;
  в) за 3 или менее таких перегибания?

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD точки P и Q – середины диагоналей AC и BD соответственно. Прямая PQ пересекает стороны AB и CD в точках N и M соответственно. Докажите, что описанные окружности треугольников ANP , BNQ , CMP и DMQ пересекаются в одной точке.

ВверхВниз   Решение


Три равные окружности радиуса R пересекаются в точке M . Пусть A , B и C – три другие точки их попарного пересечения. Докажите, что: а) радиус окружности, описанной около треугольника ABC , равен R ; б) M – точка пересечения высот треугольника ABC .

ВверхВниз   Решение


Докажите, что если при инверсии относительно некоторой окружности с центром O окружность S переходит в окружность S' , то O — один из центров гомотетии окружностей S и S' .

ВверхВниз   Решение


На окружности, касающейся сторон угла с вершиной O , выбраны две диаметрально противоположные точки A и B (отличные от точек касания). Касательная к окружности в точке B пересекает стороны угла в точках C и D , а прямую OA — в точке E . Докажите, что BC=DE .

ВверхВниз   Решение


Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.
Докажите, что их можно разбить на пары и провести прямую через каждую пару так, чтобы все точки пересечения прямых были в круге.

ВверхВниз   Решение


Из точек A и B , лежащих на разных сторонах угла, восставлены перпендикуляры к сторонам, пересекающие биссектрису угла в точках C и D . Докажите, что середина отрезка CD равноудалена от точек A и B .

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 563]      



Задача 97801

Тема:   [ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Бильярд имеет форму прямоугольного треугольника, один из острых углов которого равен 30°. Из этого угла по медиане противоположной стороны выпущен шар (материальная точка). Доказать, что после восьми отражений (угол падения равен углу отражения) он попадёт в лузу, находящуюся в вершине угла 60°.

Прислать комментарий     Решение

Задача 108627

Темы:   [ Симметрия помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3
Классы: 8,9

Из точек A и B , лежащих на разных сторонах угла, восставлены перпендикуляры к сторонам, пересекающие биссектрису угла в точках C и D . Докажите, что середина отрезка CD равноудалена от точек A и B .
Прислать комментарий     Решение


Задача 108911

Темы:   [ Симметрия помогает решить задачу ]
[ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

Пусть A и B – две окружности, лежащие по одну сторону от прямой m . Постройте касательную к окружности A , которая после отражения от прямой m также коснётся окружности B .
Прислать комментарий     Решение


Задача 116042

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 8,9

На плоскости дана прямая. С помощью пятака постройте две точки какой-нибудь прямой, перпендикулярной данной. Разрешаются такие операции: отметить точку, приложить пятак к ней и обвести его; отметить две точки (на расстоянии меньше диаметра пятака), приложить пятак к ним и обвести его. Нет возможности прикладывать пятак к прямой так, чтобы она его касалась.

Прислать комментарий     Решение

Задача 116962

Темы:   [ Осевая и скользящая симметрии (прочее) ]
[ Геометрия на клетчатой бумаге ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:
  а) за 5 или менее;
  б) за 4 или менее;
  в) за 3 или менее таких перегибания?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .