ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В окружности проведены две параллельные хорды AB и CD. Прямая, проведённая через точку C и середину AB, вторично пересекает окружность в точке E. Точка K – середина отрезка DE. Докажите, что ∠AKE = ∠BKE. Решение |
Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 1275]
В треугольнике ABC отмечена точка O и из неё опущены перпендикуляры OA1, OB1, OC1 на стороны BC, AC, AB соответственно. Пусть A2, B2, C2 – вторые точки пересечения прямых AO, BO, CO с описанной окружностью треугольника ABC. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.
В окружности проведены две параллельные хорды AB и CD. Прямая, проведённая через точку C и середину AB, вторично пересекает окружность в точке E. Точка K – середина отрезка DE. Докажите, что ∠AKE = ∠BKE.
Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром I вписанной окружности треугольника ABC, параллелен AC.
На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что AP = CQ и четырёхугольник RPBQ – вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что RX = RY.
Вписанная окружность треугольника ABC касается сторон BC, AC, AB в точках A1, B1, C1 соответственно. Отрезок AA1 вторично пересекает вписанную окружность в точке Q. Прямая l параллельна BC и проходит через A. Прямые A1C1 и A1B1 пересекают l в точках P и R соответственно. Докажите, что ∠PQR = ∠B1QC1.
Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 1275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|