ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние. Дан квадрат, внутри которого лежит точка O. Докажите, что сумма углов OAB, OBC, OCD и ODA отличается от 180° не больше чем на 45°. В прямоугольном треугольнике известны отрезки a и b , на которые точка касания вписанного в треугольник круга делит гипотенузу. Найдите площадь этого треугольника. На плоскости даны 16 точек (см. рисунок). а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата. Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что BX = BY. Незнайка разрезал фигуру на трёхклеточные и четырёхклеточные уголки, нарисованные справа от неё. Сколько трёхклеточных уголков могло получиться?
Точка M лежит на стороне BC треугольника ABC . Известно, что радиус окружности, вписанной в треугольник ABM , в два раза больше радиуса окружности, вписанной в треугольник ACM . Может ли отрезок AM оказаться медианой треугольника ABC ? В треугольнике ABC провели биссектрису CK, а в треугольнике BCK – биссектрису KL. Прямые AC и KL пересекаются в точке M. Известно, что В треугольник ABC вписана окружность с центром O. Медиана AD пересекает её в точках X и Y. Найдите угол XOY, если AC = AB + AD. Две окружности O и O1 пересекаются в точке A . Провести через точку A такую прямую, чтобы отрезок BC , высекаемый на ней окружностями O и O1 , был равен данному. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
Две окружности O и O1 пересекаются в точке A . Провести через точку A такую прямую, чтобы отрезок BC , высекаемый на ней окружностями O и O1 , был равен данному.
Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние.
Даны прямая l и точки A и B по разные стороны от неё. С помощью циркуля и линейки постройте такую точку M, что угол между AM и l в два раза меньше угла между BM и l, если известно, что эти углы не имеют общих сторон.
Через две точки, лежащие в круге, провести окружность, лежащую целиком в том же круге.
Для данной пары окружностей постройте две концентрические окружности, каждая из которых касается двух данных. Сколько решений имеет задача, в зависимости от расположения окружностей?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке