Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите, что в прямоугольном треугольнике каждый катет меньше гипотенузы.

Вниз   Решение


Автор: Джукич Д.

Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.

ВверхВниз   Решение


Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом?

ВверхВниз   Решение


Серёжа вырезал из картона две одинаковые фигуры. Он положил их с нахлёстом на дно прямоугольного ящика. Дно оказалось полностью покрыто. В центр дна вбили гвоздь. Мог ли гвоздь проткнуть одну картонку и не проткнуть другую?

ВверхВниз   Решение


Кузнечик прыгает по отрезку [0,1]. За один прыжок он может попасть из точки x либо в точку x/31/2, либо в точку x/31/2+(1-(1/31/2)). На отрезке [0,1] выбрана точка a.
Докажите, что, начиная из любой точки, кузнечик может через несколько прыжков оказаться на расстоянии меньше 1/100 от точки a.

ВверхВниз   Решение


Сколькими способами можно поставить 8 ладей на шахматную доску так, чтобы они не били друг друга?

ВверхВниз   Решение


Завод выпускает погремушки в виде кольца с надетыми на него тремя красными и семью синими шариками. Сколько различных погремушек может быть выпущено? (Две погремушки считаются одинаковыми, если одна из них может быть получена из другой только передвижением шариков по кольцу и переворачиванием.)

ВверхВниз   Решение


Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.

Докажите, что  ∠APB = ∠CQD.

ВверхВниз   Решение


Для данной пары окружностей постройте две концентрические окружности, каждая из которых касается двух данных. Сколько решений имеет задача, в зависимости от расположения окружностей?

ВверхВниз   Решение


На продолжении наибольшей стороны AC треугольника ABC отложен отрезок |CD|=|BC| . Доказать, что ABD тупой.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 122]      



Задача 55190

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 3+
Классы: 8,9

Пусть BD — биссектриса треугольника ABC. Докажите, что AB > AD и CB > CD.

Прислать комментарий     Решение


Задача 55166

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 3+
Классы: 8,9

У треугольника ABC угол C — тупой. Докажите, что если точка X лежит на стороне AC, а точка Y — на стороне BC, то XY < AB.

Прислать комментарий     Решение


Задача 55180

Темы:   [ Против большей стороны лежит больший угол ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что $ \angle$B $ \geqslant$ 90o. На отрезке BC взяты точки M и N так, что лучи AN и AM делят угол BAC на три равные части. Докажите, что BM < MN < NC.

Прислать комментарий     Решение


Задача 109039

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 7,8,9

На продолжении наибольшей стороны AC треугольника ABC отложен отрезок |CD|=|BC| . Доказать, что ABD тупой.
Прислать комментарий     Решение


Задача 55181

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенства с медианами ]
Сложность: 4-
Классы: 8,9

В треугольнике $ABC$ угол $B$ — прямой или тупой. На стороне $BC$ взяты точки $M$ и $N$ так, что $BM = MN = NC$. Докажите, что $\angle BAM > \angle MAN > \angle NAC$.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .