ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

x1 – вещественный корень уравнения  x² + ax + b = 0,  x2 – вещественный корень уравнения  x² – ax – b = 0.
Доказать, что уравнение  x² + 2ax + 2b = 0  имеет вещественный корень, заключённый между x1 и x2.  (a и b – вещественные числа).

   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 965]      



Задача 107765

Темы:   [ Свойства коэффициентов многочлена ]
[ Малые шевеления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Существует ли такой многочлен P(x), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (P(x))n,  n > 1,  положительны?

Прислать комментарий     Решение

Задача 109041

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4-
Классы: 8,9,10

x1 – вещественный корень уравнения  x² + ax + b = 0,  x2 – вещественный корень уравнения  x² – ax – b = 0.
Доказать, что уравнение  x² + 2ax + 2b = 0  имеет вещественный корень, заключённый между x1 и x2.  (a и b – вещественные числа).

Прислать комментарий     Решение

Задача 109913

Темы:   [ Исследование квадратного трехчлена ]
[ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10

Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:
  1) проверять, равны ли выбранные два числа,
  2) складывать выбранные числа,
  3) по выбранным числам a и b находить корни уравнения  x² + ax + b = 0,  а если корней нет, выдавать сообщение об этом.
Результаты всех действий заносятся в память. Первоначально в памяти записано одно число x. Как с помощью МК-97 узнать, равно ли это число единице?

Прислать комментарий     Решение

Задача 110062

Темы:   [ Исследование квадратного трехчлена ]
[ Неравенство треугольника (прочее) ]
[ Произвольные многоугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Длины сторон многоугольника равны  a1, a2, ..., an.  Квадратный трёхчлен  f(x) таков, что  f(a1) = f(a2 + ... + an).
Докажите, что если A – сумма длин нескольких сторон многоугольника, B – сумма длин остальных его сторон, то  f(A) = f(B).

Прислать комментарий     Решение

Задача 110175

Темы:   [ Целочисленные и целозначные многочлены ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 9,10,11

Докажите, что для любого многочлена P с целыми коэффициентами и любого натурального k существует такое натуральное n, что  P(1) + P(2) + ... + P(n)  делится на k.

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .