ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка M равноудалена от трёх прямых AB , BC и AC . Докажите, что ортогональная проекция точки M на плоскость ABC является центром вписанной окружности либо одной из вневписанных окружностей треугольника ABC .

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 694]      



Задача 109098

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Известно, что некоторая точка M равноудалена от двух пересекающихся прямых m и n . Докажите, что ортогональная проекция точки M на плоскость прямых m и n лежит на биссектрисе одного из углов, образованных прямыми m и n .
Прислать комментарий     Решение


Задача 109099

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 10,11

Точка M равноудалена от трёх прямых AB , BC и AC . Докажите, что ортогональная проекция точки M на плоскость ABC является центром вписанной окружности либо одной из вневписанных окружностей треугольника ABC .
Прислать комментарий     Решение


Задача 109101

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Прямая l проходит через точку, лежащую на окружности с центром O и радиусом r . Известно, что ортогональной проекцией прямой l на плоскость окружности является прямая, касающаяся этой окружности. Найдите расстояние от точки O до прямой l .
Прислать комментарий     Решение


Задача 109103

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортоцентрический тетраэдр ]
Сложность: 3
Классы: 10,11

Докажите, что если ортогональная проекция одной из вершин треугольной пирамиды на плоскость противоположной грани совпадает с точкой пересечения высот этой грани, то это же будет верно для любой другой вершины пирамиды.
Прислать комментарий     Решение


Задача 109105

Тема:   [ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 3
Классы: 10,11

Докажите, что если прямая p образует равные углы с тремя попарно пересекающимся прямыми плоскости, то прямая p перпендикулярна этой плоскости.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .