|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Составьте уравнение плоскости, проходящей через точку M0(x0;y0;z0) перпендикулярно ненулевому вектору Найдите производящие функции последовательности многочленов Фибоначчи F(x, z) = F0(x) + F1(x)z + F2(x)z² + ... + Fn(x)zn + ...
При подстановке в многочлены Чебышёва (см. задачу 61099) числа x = cos α получаются значения В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через диагональ A1C1 грани куба и середину ребра AD . Найдите расстояние от середины ребра AB до плоскости P , если ребро куба равно 3. Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества A1, A2, A3, ... так, чтобы при любом натуральном k сумма всех чисел, входящих в подмножество Ak, равнялась k + 2013? а) Используя формулу Муавра, докажите, что cos nx = Tn(cos x), sin nx = sin x Un–1(cos x), где Tn(z) и Un(z) – многочлены степени n. Многочлены Tn(z) и Un(z) называются многочленами Чебышёва первого и второго рода соответственно. Шар радиуса R касается плоскости α . Рассмотрим всевозможные шары радиуса r , касающиеся данного шара и плоскости α . Найдите геометрические места центров этих шаров и точек их касания с плоскостью и данным шаром. |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 257]
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 257] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|