Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Слоны, носороги, жирафы. Во всех зоопарках, где есть слоны и носороги, нет жирафов. Во всех зоопарках, где есть носороги и нет жирафов, есть слоны. Наконец, во всех зоопарках, где есть слоны и жирафы, есть и носороги. Может ли быть такой зоопарк, в котором есть слоны, но нет ни жирафов, ни носорогов?

Вниз   Решение


Графики трёх функций  y = ax + a,  y = bx + b  и  y = cx + d  имеют общую точку, причём  a ≠ b.  Обязательно ли  c = d?

ВверхВниз   Решение


В равные углы X1OY и YOX2 вписаны окружности ω1 и ω2, касающиеся сторон OX1 и OX2 в точках A1 и A2 соответственно, а стороны OY – в точках B1 и B2. C1 – вторая точка пересечения A1B2 и ω1, а C2 – вторая точка пересечения A2B1 и ω2. Докажите, что C1C2 – общая касательная к окружностям.

ВверхВниз   Решение


Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в записи которых каждая из этих цифр встречается ровно один раз.
Доказать, что сумма всех таких чисел делится на 9.

ВверхВниз   Решение


Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих?

ВверхВниз   Решение


30 команд участвуют в розыгрыше первенства по футболу.
Доказать, что в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое число матчей.

ВверхВниз   Решение


В основании прямой призмы лежит прямоугольный треугольник с катетами 1 и 10 . Боковые ребра равны . Найдите объем цилиндра, описанного около этой призмы.


ВверхВниз   Решение


Найдите все решения ребуса:  АРКА + РКА + КА + А = 2014.  (Различным буквам соответствуют различные цифры, а одинаковым буквам – одинаковые цифры.)

ВверхВниз   Решение


Стороны треугольника равны a, b, c. Три шара попарно касаются друг друга и плоскости треугольника в его вершинах. Найдите радиусы шаров.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 84]      



Задача 87131

Темы:   [ Касающиеся сферы ]
[ Касательные к сферам ]
Сложность: 3
Классы: 10,11

Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30o . Найдите радиусы сфер.
Прислать комментарий     Решение


Задача 109272

Темы:   [ Касающиеся сферы ]
[ Конус ]
Сложность: 3
Классы: 10,11

Три сферы радиуса 1 попарно касаются друг друга и некоторой плоскости. Основание конуса расположено в этой плоскости. Все три сферы касаются боковой поверхности конуса внешним образом. Найдите радиус основания конуса, если высота конуса равна 2.
Прислать комментарий     Решение


Задача 109273

Темы:   [ Касающиеся сферы ]
[ Конус ]
Сложность: 3
Классы: 10,11

Три шара одинакового радиуса попарно касаются друг друга и некоторой плоскости. Основание конуса расположено в этой плоскости. Все три сферы касаются боковой поверхности конуса внешним образом. Найдите угол при вершине осевого сечения конуса, если высота конуса равна диаметру шара.
Прислать комментарий     Решение


Задача 109274

Темы:   [ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 3
Классы: 10,11

Сторона основания правильной четырёхугольной пирамиды равна a . Центры двух шаров радиуса r , содержащихся внутри пирамиды, расположены на её высоте. Первый шар касается плоскости основания пирамиды, второй шар касается первого и плоскостей всех боковых граней пирамиды. Найдите высоту пирамиды.
Прислать комментарий     Решение


Задача 109318

Темы:   [ Касающиеся сферы ]
[ Касательные к сферам ]
Сложность: 3
Классы: 10,11

Стороны треугольника равны a, b, c. Три шара попарно касаются друг друга и плоскости треугольника в его вершинах. Найдите радиусы шаров.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 84]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .