ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На стороне AC треугольника ABC взята точка D так, что AD:DC=1:2 . Докажите, что у треугольников ADB и CDB есть по равной медиане.

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 1435]      



Задача 108131

Темы:   [ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC медиана BM равна стороне AC. На продолжениях сторон BA и AC за точки A и C выбраны соответственно точки D и E, причём
AD = AB  и  CE = CM.  Докажите, что прямые DM и BE перпендикулярны.

Прислать комментарий     Решение

Задача 108591

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике, не являющемся параллелограммом, две противоположные стороны равны.
Докажите, что прямая, проходящая через середины его диагоналей, образует равные углы с этими сторонами.

Прислать комментарий     Решение

Задача 108678

Темы:   [ Углы между биссектрисами ]
[ Вневписанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Четыре точки, лежащие на одной окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Окружность с центром D проходит через вершины A, B и центр O вневписанной окружности треугольника ABC , касающейся его стороны BC и продолжений сторон AB и AC. Докажите, что точки A, B, C и D лежат на одной окружности.

Прислать комментарий     Решение

Задача 109466

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На стороне AC треугольника ABC взята точка D так, что AD:DC=1:2 . Докажите, что у треугольников ADB и CDB есть по равной медиане.
Прислать комментарий     Решение


Задача 110963

Темы:   [ Удвоение медианы ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Медиана AD и высота CE равнобедренного треугольника ABC  (AB = BC)  пересекаются в точке P.
Найдите площадь треугольника ABC, если  CP = 5,  PE = 2.

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 1435]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .