ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Миша мысленно расположил внутри данного круга единичного радиуса выпуклый многоугольник, содержащий центр круга, а Коля пытается угадать его периметр. За один шаг Коля указывает Мише какую-либо прямую и узнает от него, пересекает ли она многоугольник. Имеет ли Коля возможность наверняка угадать периметр многоугольника: а) через 3 шага с точностью до 0,3; б) через 2007 шагов с точностью до 0,003?

   Решение

Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 416]      



Задача 105191

Темы:   [ Периодичность и непериодичность ]
[ Теоремы о среднем значении ]
[ Рекуррентные соотношения (прочее) ]
[ Предел последовательности, сходимость ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 6
Классы: 10,11

Для заданных натуральных чисел k0<k1<k2 выясните, какое наименьшее число корней на промежутке [0; 2π) может иметь уравнение вида

sin(k0x)+A1·sin(k1x) +A2·sin(k2x)=0

где A1, A2 – вещественные числа.
Прислать комментарий     Решение

Задача 73787

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Правильные многоугольники ]
[ Метод координат на плоскости ]
[ Поворот помогает решить задачу ]
[ Рациональные и иррациональные числа ]
[ Приближения чисел ]
[ Тригонометрия (прочее) ]
Сложность: 7
Классы: 9,10,11

а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга.
б) Решите аналогичную задачу для правильного пятиугольника.
в) Для каких правильных n-угольников верно аналогичное утверждение?

Прислать комментарий     Решение

Задача 109507

Темы:   [ Выпуклые многоугольники ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Многоугольники (неравенства) ]
[ Метод координат на плоскости ]
[ Интеграл и длина ]
Сложность: 7
Классы: 10,11

Миша мысленно расположил внутри данного круга единичного радиуса выпуклый многоугольник, содержащий центр круга, а Коля пытается угадать его периметр. За один шаг Коля указывает Мише какую-либо прямую и узнает от него, пересекает ли она многоугольник. Имеет ли Коля возможность наверняка угадать периметр многоугольника: а) через 3 шага с точностью до 0,3; б) через 2007 шагов с точностью до 0,003?
Прислать комментарий     Решение


Задача 61252

Темы:   [ Кубические многочлены ]
[ Графики и ГМТ на координатной плоскости ]
[ Перенос помогает решить задачу ]
[ Многочлен нечетной степени имеет действительный корень ]
[ Возрастание и убывание. Исследование функций ]
[ Производная и экстремумы ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 10,11

Докажите, что
  а) при  p ≥ 0  график многочлена  x³ + px + q  пересекает каждую горизонтальную прямую ровно в одной точке;
  б) при  p < 0  график пересекает некоторые горизонтальные прямые в трёх точках;
  в) при  p < 0  график имеет один минимум и один максимум;
  г) абсциссы точек минимума и максимума противоположны.

Прислать комментарий     Решение

Задача 107999

Темы:   [ Итерации ]
[ Графики и ГМТ на координатной плоскости ]
[ Поворот на $90^\circ$ ]
[ Системы точек и отрезков (прочее) ]
[ Четность и нечетность ]
[ Разрывы функций ]
Сложность: 4+
Классы: 9,10,11

а) Известно, что область определения функции  f(x)  – отрезок  [–1, 1]  и  f(f(x)) = – x  при всех x, а её график является объединением конечного числа точек и интервалов. Нарисовать график такой функции f(x).

б) Можно ли это сделать, если область определения функции – интервал  (–1, 1)?  Вся числовая ось?

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .