ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружности σB, σC – вневписанные для треугольника ABC (касаются соответственно сторон AC и AB и продолжений двух других сторон). Окружность ωB симметрична σB относительно середины стороны AC, окружность ωC симметрична σC относительно середины стороны AB. Докажите, что прямая, проходящая через точки пересечения окружностей ωB и ωC, делит периметр треугольника ABC пополам.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78]      



Задача 65049

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Теоремы Чевы и Менелая ]
[ Отношения линейных элементов подобных треугольников ]
[ Решение задач при помощи аффинных преобразований ]
Сложность: 5-
Классы: 10,11

Дан треугольник ABC и прямая l, пересекающая BC, CA и AB в точках A1, B1 и C1 соответственно. Точка A' – середина отрезка, соединяющего проекции A1 на AB и AC. Аналогично определяются точки B' и C'.
  а) Докажите, что A', B' и C' лежат на некоторой прямой l'.
  б) Докажите, что, если l проходит через центр описанной окружности треугольника ABC, то l' проходит через центр его окружности девяти точек.

Прислать комментарий     Решение

Задача 116770

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Отношения линейных элементов подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Симметрия помогает решить задачу ]
Сложность: 5
Классы: 10,11

Точка E – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника ABC с его вершиной A. Вписанная окружность этого треугольника касается сторон AB и AC в точках C' и B' соответственно. Докажите, что точка F, симметричная точке E относительно прямой B'C', лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника ABC.

Прислать комментарий     Решение

Задача 65756

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Точка Лемуана ]
[ Вписанные четырехугольники (прочее) ]
[ Отношения линейных элементов подобных треугольников ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Средняя линия треугольника ]
[ Гомотетия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5+
Классы: 9,10,11

Пусть ABC – остроугольный треугольник, в котором  AC < BC; M – середина стороны AB. В описанной окружности Ω треугольника ABC, проведён диаметр CC'. Прямая CM пересекает прямые AC' и BC' в точках K и L соответственно. Перпендикуляр к прямой AC', проведённый через точку K, перпендикуляр к прямой BC', проведённый через точку L, и прямая AB образуют треугольник Δ. Докажите, что описанная окружность ω треугольника Δ касается окружности Ω.
Прислать комментарий     Решение


Задача 116176

Темы:   [ Четырехугольная пирамида ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Отношения линейных элементов подобных треугольников ]
[ Теорема Птолемея ]
[ Стереографическая проекция ]
Сложность: 4
Классы: 10,11

B основании четырёхугольной пирамиды SABCD лежит четырёхугольник ABCD, диагонали которого перпендикулярны и пересекаются в точке P, и SP является высотой пирамиды. Докажите, что проекции точки P на боковые грани пирамиды лежат на одной окружности.

Прислать комментарий     Решение

Задача 109826

Темы:   [ Вневписанные окружности ]
[ Радикальная ось ]
[ Две касательные, проведенные из одной точки ]
[ Периметр треугольника ]
[ Окружность, вписанная в угол ]
[ Отношения линейных элементов подобных треугольников ]
[ Центральная симметрия помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 5
Классы: 9,10,11

Окружности σB, σC – вневписанные для треугольника ABC (касаются соответственно сторон AC и AB и продолжений двух других сторон). Окружность ωB симметрична σB относительно середины стороны AC, окружность ωC симметрична σC относительно середины стороны AB. Докажите, что прямая, проходящая через точки пересечения окружностей ωB и ωC, делит периметр треугольника ABC пополам.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .