Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Найдите длину кратчайшего пути по поверхности единичного правильного тетраэдра между серединами его противоположных рёбер.

Вниз   Решение


В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

ВверхВниз   Решение


Какие треугольники можно разрезать на три треугольника с равными радиусами описанных окружностей?

ВверхВниз   Решение


В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.

ВверхВниз   Решение


Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?

ВверхВниз   Решение


В треугольнике ABC медиана AK пересекает медиану BD в точке L. Найдите площадь треугольника ABC, если площадь четырёхугольника KCDL равна 5.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD  ∠B = ∠D,  а центр описанной окружности треугольника ABC, ортоцентр треугольника ADC и вершина B лежат на одной прямой. Докажите, что ABCD – параллелограмм.

ВверхВниз   Решение


Автор: Фольклор

Докажите, что в правильной треугольной пирамиде двугранный угол между боковыми гранями больше чем 60°.

ВверхВниз   Решение


Дан равносторонний треугольник АВС. Точка К – середина стороны АВ, точка М лежит на стороне ВС, причём  ВМ : МС = 1 : 3.  На стороне АС выбрана точка P так, что периметр треугольника РКМ – наименьший из возможных. В каком отношении точка Р делит сторону АС?

ВверхВниз   Решение


Маленький Петя подпилил все ножки у квадратной табуретки и четыре отпиленных кусочка потерял. Оказалось, что длины всех кусочков различны, и что табуретка после этого стоит на полу, пусть наклонно, но по-прежнему касаясь пола всеми четырьмя концами ножек. Дедушка решил починить табуретку, однако нашёл только три кусочка с длинами 8, 9 и 10 см. Какой длины может быть четвёртый кусочек?

ВверхВниз   Решение


На плоскости дано k точек, расположенных так, что на каждой прямой, соединяющей две из этих точек, лежит по крайней мере ещё одна из них. Доказать, что все k точек лежат на одной прямой.

ВверхВниз   Решение


Внутри треугольника ABC на биссектрисе его угла B выбрана такая точка M, что  AM = AC  и  ∠BCM = 30°.  Докажите, что  ∠AMB = 150°.

ВверхВниз   Решение


Числа a и b таковы, что   a³ – b³ = 2,  a5b5 ≥ 4.   Докажите, что  a² + b² ≥ 2.

ВверхВниз   Решение


Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.

ВверхВниз   Решение


На плоскости дано множество из n9 точек. Для любых 9 его точек можно выбрать две окружности так, что все эти точки окажутся на выбранных окружностях. Докажите, что все n точек лежат на двух окружностях.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



Задача 78067

Темы:   [ Системы точек ]
[ Итерации ]
Сложность: 3+
Классы: 9

На окружности длины 15 выбрано n точек, так что для каждой имеется ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояние измеряется по окружности). Докажите, что n делится на 10.
Прислать комментарий     Решение


Задача 78225

Темы:   [ Системы точек ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 9,10

Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника?
Прислать комментарий     Решение


Задача 109961

Темы:   [ Системы точек ]
[ Четыре точки, лежащие на одной окружности ]
[ Взаимное расположение двух окружностей ]
Сложность: 3+
Классы: 7,8,9

На плоскости дано множество из n9 точек. Для любых 9 его точек можно выбрать две окружности так, что все эти точки окажутся на выбранных окружностях. Докажите, что все n точек лежат на двух окружностях.
Прислать комментарий     Решение


Задача 79282

Темы:   [ Системы точек ]
[ Касающиеся окружности ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4-
Классы: 7,8,9

На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?
Прислать комментарий     Решение


Задача 79409

Темы:   [ Системы точек ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8

Какое наименьшее количество точек на плоскости надо взять, чтобы среди попарных расстояний между ними встретились числа 1, 2, 4, 8, 16, 32, 64?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .