ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Осевым сечением конуса является правильный треугольник со стороной a. Через ось конуса проведены две перпендикулярные плоскости, которые делят конус на четыре части. Найдите радиус сферы, вписанной в одну из этих частей.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 257]      



Задача 110289

Темы:   [ Конус ]
[ Касательные к сферам ]
Сложность: 3
Классы: 10,11

Осевым сечением конуса является правильный треугольник со стороной a. Через ось конуса проведены две перпендикулярные плоскости, которые делят конус на четыре части. Найдите радиус сферы, вписанной в одну из этих частей.
Прислать комментарий     Решение


Задача 110290

Темы:   [ Куб ]
[ Сфера, вписанная в трехгранный угол ]
Сложность: 3
Классы: 10,11

Внутри единичного куба расположены восемь равных шаров. Каждый шар вписан в один из трёхгранных углов куба и касается трёх шаров, соответствующих соседним вершинам куба. Найдите радиусы шаров.
Прислать комментарий     Решение


Задача 110293

Темы:   [ Сфера, вписанная в трехгранный угол ]
[ Касательные к сферам ]
Сложность: 3
Классы: 10,11

Дан трёхгранный угол OABC с вершиной O , в котором BOC = α , COA = β , AOB = γ . Пусть вписанная в него сфера касается грани BOC в точке K . Найдите угол BOK .
Прислать комментарий     Решение


Задача 110297

Темы:   [ Конус ]
[ Сферы (прочее) ]
Сложность: 3
Классы: 10,11

Осевым сечением конуса является равносторонний треугольник со стороной 1. Найдите радиус сферы, касающейся оси конуса, его основания и боковой поверхности.
Прислать комментарий     Решение


Задача 110311

Темы:   [ Касающиеся сферы ]
[ Касательные к сферам ]
Сложность: 3
Классы: 10,11

Три шара радиуса R попарно касаются между собой и некоторой плоскости. Найдите радиус шара, касающегося данных и той же плоскости.
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 257]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .