ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки A', B', C' – основания высот остроугольного треугольника ABC. Окружность с центром B и радиусом BB' пересекает прямую A'C' в точках K и L (точки K и A лежат по одну сторону от BB'). Докажите, что точка пересечения прямых AK и CL лежит на прямой BO, где O – центр описанной окружности треугольника ABC.

   Решение

Задачи

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 829]      



Задача 108171

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники ]
[ Три окружности пересекаются в одной точке ]
Сложность: 4+
Классы: 8,9

Центр O описанной окружности четырёхугольника ABCD не лежит на диагоналях этого четырёхугольника. Прямые AB и CD пересекаются в точке E, а прямые AD и BC – в точке F.
  а) Докажите все шесть описанных окружностей треугольников ABF, CDF, BEC, ADE, BOD и AOC пересекаются в некоторой точке K.
  б) Верно ли, что точка K лежит на прямой EF, а прямые EF и OK перпендикулярны?

Прислать комментарий     Решение

Задача 108191

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Гомотетия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
[ Симметрия помогает решить задачу ]
[ Точка Лемуана ]
Сложность: 4+
Классы: 9,10,11

В остроугольном треугольнике ABC на высоте BK как на диаметре построена окружность S, пересекающая стороны AB и BC в точках E и F соответственно. К окружности S в точках E и F проведены касательные. Докажите, что их точка пересечения лежит на прямой, содержащей медиану треугольника ABC, проведённую из вершины B.

Прислать комментарий     Решение

Задача 110753

Темы:   [ Ортоцентр и ортотреугольник ]
[ Три прямые, пересекающиеся в одной точке ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 8,9,10

Точки A', B', C' – основания высот остроугольного треугольника ABC. Окружность с центром B и радиусом BB' пересекает прямую A'C' в точках K и L (точки K и A лежат по одну сторону от BB'). Докажите, что точка пересечения прямых AK и CL лежит на прямой BO, где O – центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116502

Темы:   [ Признаки подобия ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10

На стороне AC треугольника ABC отмечена точка K, причём  AK = 2KC  и  ∠ABK = 2∠KBCF – середина стороны AC, L – проекция точки A на BK. Докажите, что прямые FL и BC перпендикулярны.

Прислать комментарий     Решение

Задача 66808

Темы:   [ Радикальная ось ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4+
Классы: 9,10,11

Автор: Юдин Ф.

Вписанная окружность $\omega$ треугольника $ABC$ касается его сторон $AC$ и $AB$ в точках $E$ и $F$ соответственно. Точки $X,Y$ на $\omega$ таковы, что $\angle BXC=\angle BYC=90^\circ$. Докажите, что прямые $EF$ и $XY$ пересекаются на средней линии треугольника $ABC$.
Прислать комментарий     Решение


Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .