ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На рисунке изображена фигура ABCD . Стороны AB , CD и AD этой фигуры– отрезки (причём AB||CD и AD CD ); BC – дуга окружности, причём любая касательная к этой дуге отсекает от фигуры трапецию или прямоугольник. Объясните, как провести касательную к дуге BC , чтобы отсекаемая фигура имела наибольшую площадь.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78]      



Задача 54900

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Неравенства с площадями ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  AC ≤ 3,  BC ≤ 4,  SABC ≥ 6.  Найдите радиус его описанной окружности.

Прислать комментарий     Решение

Задача 55236

Темы:   [ Неравенство Коши ]
[ Площадь трапеции ]
[ Неравенства с площадями ]
[ Четырехугольники (экстремальные свойства) ]
Сложность: 3+
Классы: 8,9

При каком значении высоты прямоугольная трапеция с острым углом 30° и периметром 6 имеет наибольшую площадь?

Прислать комментарий     Решение

Задача 98060

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Неравенство Коши ]
[ Неравенства с площадями ]
Сложность: 4-
Классы: 8,9

На квадратный лист бумаги со стороной a посадили несколько клякс, площадь каждой из которых не больше 1. Оказалось, что каждая прямая, параллельная сторонам листа, пересекает не более одной кляксы. Докажите, что суммарная площадь клякс не больше a.

Прислать комментарий     Решение

Задача 56787

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Неравенства с площадями ]
Сложность: 4
Классы: 8,9,10

Каждая из трех прямых делит площадь фигуры пополам. Докажите, что часть фигуры, заключенная внутри треугольника, образованного этими прямыми, имеет площадь, не превосходящую 1/4 площади всей фигуры.
Прислать комментарий     Решение


Задача 110924

Темы:   [ Площадь трапеции ]
[ Экстремальные свойства (прочее) ]
[ Неравенства с площадями ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 9,10,11

На рисунке изображена фигура ABCD . Стороны AB , CD и AD этой фигуры– отрезки (причём AB||CD и AD CD ); BC – дуга окружности, причём любая касательная к этой дуге отсекает от фигуры трапецию или прямоугольник. Объясните, как провести касательную к дуге BC , чтобы отсекаемая фигура имела наибольшую площадь.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .