Страница:
<< 86 87 88 89
90 91 92 >> [Всего задач: 460]
|
|
Сложность: 5- Классы: 8,9,10
|
Дан треугольник
A0
B0
C0
. На отрезке
A0
B0
отмечены точки
A1
,
A2
, ,An , а на отрезке
B0
C0
– точки
C1
,
C2
, , Cn , причём
все отрезки
AiCi+1
(
i=0
,1
, n-1
), параллельны
между собой и все отрезки
CiAi+1
(
i=0
,1
, n-1
)
– тоже. Отрезки
C0
A1
,
A1
C2
,
A2
C1
и
C1
A0
ограничивают некоторый параллелограмм, отрезки
C1
A2
,
A2
C3
,
A3
C2
и
C2
A1
–
тоже и т.д. Докажите, что сумма площадей всех
n-1
получившихся
параллелограммов меньше половины площади треугольника
A0
B0
C0
.
|
|
Сложность: 5- Классы: 8,9,10,11
|
Нарисуйте многоугольник и точку на его границе так,
что любая прямая, проходящая через эту точку, делит площадь этого
многоугольника пополам.
Докажите, что сумма площадей пяти треугольников,
образованных парами соседних сторон и соответствующими диагоналями
выпуклого пятиугольника, больше площади всего пятиугольника.
а) В треугольнике ABC проведена биссектриса BD
внутреннего или внешнего угла. Докажите, что AD : DC = AB : BC.
б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении AO : OA1 = (b + c) : a, где a, b, c – длины сторон треугольника.
|
|
Сложность: 2+ Классы: 9,10,11
|
В трапеции ABCD (AD || BC) из точки Е – середины CD провели перпендикуляр EF к прямой AB. Найдите площадь трапеции, если АВ = 5, EF = 4.
Страница:
<< 86 87 88 89
90 91 92 >> [Всего задач: 460]