ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, O – точка серединного перпендикуляра к отрезку BC, равноудалённая от точек B1 и C1. Докажите, что ∠B1OC1 = 180° – φ. В треугольнике ABC, таком, что AB = BC = 4 и
AC = 2, проведены биссектриса AA1, медиана BB1 и высота CC1. В треугольнике ABC даны длины сторон AB = 8, BC = 6 и биссектриса BD = 6. Найдите длину медианы AE.
В трапеции CDEF (
DE
Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу. Вневписанная окружность треугольника ABC касается его стороны BC в точке K, а продолжения стороны AB – в точке L. Другая вневписанная окружность касается продолжений сторон AB и BC в точках M и N соответственно. Прямые KL и MN пересекаются в точке X. Докажите, что CX – биссектриса угла ACN. Сторона основания ABC правильной треугольной пирамиды ABCD равна 6, двугранный угол между боковыми гранями равен arccos 7/32. Точки A1 и B1 – середины рёбер AD и BD соответственно, BC1 – высота в треугольнике DBC. Найдите: На трёх отрезках OA, OB и OC одинаковой длины (точка B лежит внутри угла AOC) как на диаметрах построены окружности. Докажите, что площадь криволинейного треугольника, ограниченного дугами этих окружностей и не содержащего точку O, равна половине площади (обычного) треугольника ABC. |
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 330]
В трапеции ABCD с боковыми сторонами AB = 9 и CD = 5 биссектриса угла D пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла B пересекает те же две биссектрисы в точках L и K, причём точка K лежит на основании AD.
В неравнобедренном треугольнике ABC проведены биссектрисы AA1 и CC1, кроме того, отмечены середины K и L сторон AB и BC соответственно. На прямую CC1 опущен перпендикуляр AP, а на прямую AA1 – перпендикуляр CQ. Докажите, что прямые KP и LQ пересекаются на стороне AC.
Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA.
На трёх отрезках OA, OB и OC одинаковой длины (точка B лежит внутри угла AOC) как на диаметрах построены окружности. Докажите, что площадь криволинейного треугольника, ограниченного дугами этих окружностей и не содержащего точку O, равна половине площади (обычного) треугольника ABC.
Дан правильный треугольник ABC с центром O. Прямая, проходящая через вершину C, пересекает описанную окружность треугольника AOB в точках D и E. Докажите, что точки A, O и середины отрезков BD, BE лежат на одной окружности.
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке