Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, O – точка серединного перпендикуляра к отрезку BC, равноудалённая от точек B1 и C1. Докажите, что  ∠B1OC1 = 180° – φ.

Вниз   Решение


В треугольнике ABC, таком, что  AB = BC = 4  и   AC = 2,  проведены биссектриса AA1, медиана BB1 и высота CC1.
Найдите площадь треугольника, образованного пересечением прямых:   а) AC, AA1 и CC1;   б) AA1, BB1 и CC1.

ВверхВниз   Решение


В треугольнике ABC даны длины сторон AB = 8, BC = 6 и биссектриса BD = 6. Найдите длину медианы AE.

ВверхВниз   Решение


В трапеции CDEF ( DE$ \Vert$CF) известно, что CF = 2 . DE. На сторонах CD и EF взяты соответственно точки K и L, CK : KD = 3 : 2, EL : LF = 5 : 3. В каком отношении прямая KL делит площадь трапеции?.

ВверхВниз   Решение


Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.

ВверхВниз   Решение


Вневписанная окружность треугольника ABC касается его стороны BC в точке K, а продолжения стороны AB – в точке L. Другая вневписанная окружность касается продолжений сторон AB и BC в точках M и N соответственно. Прямые KL и MN пересекаются в точке X. Докажите, что CX – биссектриса угла ACN.

ВверхВниз   Решение


Сторона основания ABC правильной треугольной пирамиды ABCD равна 6, двугранный угол между боковыми гранями равен arccos 7/32. Точки A1 и B1 – середины рёбер AD и BD соответственно, BC1 – высота в треугольнике DBC. Найдите:
  1) угол между прямыми AB и B1C1;
  2) площадь треугольника A1B1C1;
  3) расстояние от точки B до плоскости A1B1C1;
  4) радиус вписанного в пирамиду A1B1C1D шара.

ВверхВниз   Решение


На трёх отрезках OA, OB и OC одинаковой длины (точка B лежит внутри угла AOC) как на диаметрах построены окружности. Докажите, что площадь криволинейного треугольника, ограниченного дугами этих окружностей и не содержащего точку O, равна половине площади (обычного) треугольника ABC.

Вверх   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 330]      



Задача 102429

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Трапеции (прочее) ]
[ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD с боковыми сторонами  AB = 9  и  CD = 5  биссектриса угла D пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла B пересекает те же две биссектрисы в точках L и K, причём точка K лежит на основании AD.
  а) В каком отношении прямая LN делит сторону AB, а прямая MK – сторону BC?
  б) Найдите отношение  MN : KL,  если  LM : KN = 3 : 7.

Прислать комментарий     Решение

Задача 108926

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Три прямые, пересекающиеся в одной точке ]
[ Три точки, лежащие на одной прямой ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

В неравнобедренном треугольнике ABC проведены биссектрисы AA1 и CC1, кроме того, отмечены середины K и L сторон AB и BC соответственно. На прямую CC1 опущен перпендикуляр AP, а на прямую AA1 – перпендикуляр CQ. Докажите, что прямые KP и LQ пересекаются на стороне AC.

Прислать комментарий     Решение

Задача 111206

Темы:   [ Площадь сечения ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Средняя линия треугольника ]
[ Площадь и ортогональная проекция ]
[ Симметрия относительно плоскости ]
[ Площадь трапеции ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 10,11

Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA.

Прислать комментарий     Решение

Задача 111698

Темы:   [ Перегруппировка площадей ]
[ Три точки, лежащие на одной прямой ]
[ Площади криволинейных фигур ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

На трёх отрезках OA, OB и OC одинаковой длины (точка B лежит внутри угла AOC) как на диаметрах построены окружности. Докажите, что площадь криволинейного треугольника, ограниченного дугами этих окружностей и не содержащего точку O, равна половине площади (обычного) треугольника ABC.

Прислать комментарий     Решение

Задача 35489

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 9,10,11

Дан правильный треугольник ABC с центром O. Прямая, проходящая через вершину C, пересекает описанную окружность треугольника AOB в точках D и E. Докажите, что точки A, O и середины отрезков BD, BE лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .