ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана окружность и точка O на ней. Вторая окружность с центром O пересекает первую в точках P и Q. Точка C лежит на первой окружности, а прямые CP, CQ вторично пересекают вторую окружность в точках A и B. Докажите, что  AB = PQ.

   Решение

Задачи

Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 563]      



Задача 111568

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Гомотетия помогает решить задачу ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4
Классы: 8,9

Высоты AA1 и CC1 остроугольного треугольника ABC пересекаются в точке H . Точка B0 – середина стороны AC . Докажите, что точка пересечения прямых, симметричных BB0 и HB0 относительно биссектрис углов ABC и AHC соответственно, лежит на прямой A1C1 .
Прислать комментарий     Решение


Задача 111598

Темы:   [ Точка Микеля ]
[ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
[ Медиана, проведенная к гипотенузе ]
[ Общая касательная к двум окружностям ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Точки A', B' и C' – середины сторон соответственно BC, CA и AB треугольника ABC, а BH – его высота.
Докажите, что если описанные окружности треугольников AHC' и CHA' окружности проходят через точку M, то  ∠ABM = ∠CBB'.

Прислать комментарий     Решение

Задача 111712

Темы:   [ Пересекающиеся окружности ]
[ Биссектриса делит дугу пополам ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9

Дана окружность и точка O на ней. Вторая окружность с центром O пересекает первую в точках P и Q. Точка C лежит на первой окружности, а прямые CP, CQ вторично пересекают вторую окружность в точках A и B. Докажите, что  AB = PQ.

Прислать комментарий     Решение

Задача 115923

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательная окружность ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Точка M находится внутри диаметра AB окружности и отлична от центра окружности. По одну сторону от этого диаметра на окружности взяты произвольные различные точки P и Q , причём отрезки PM и QM образуют равные углы с диаметром. Докажите, что все прямые PQ проходят через одну точку.
Прислать комментарий     Решение


Задача 116705

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Формула включения-исключения ]
[ Композиции симметрий ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 4
Классы: 11

После обеда на прозрачной квадратной скатерти остались тёмные пятна общей площади S. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна S1. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна S. Какое наименьшее значение может принимать величина  S1 : S?

Прислать комментарий     Решение

Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .