Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Окружность с центром D проходит через вершины A, B и центр O вневписанной окружности треугольника ABC , касающейся его стороны BC и продолжений сторон AB и AC. Докажите, что точки A, B, C и D лежат на одной окружности.

Вниз   Решение


На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?

ВверхВниз   Решение


В треугольнике ABC, где  AB = BC = 6  и   AC = 2,  проведены медиана AA1, высота BB1 и биссектриса CC1.
Найдите площадь треугольника, образованного пересечением прямых:   а) BB1, CC1 и BC;   б) AA1, BB1 и CC1.

ВверхВниз   Решение


а) Внутри окружности находится некоторая точка A. Через A провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках.
Докажите, что центр масс этих точек не зависит от выбора таких двух прямых.

б) Внутри окружности находится правильный 2n-угольник  (n > 2),  его центр A не обязательно совпадает с центром окружности. Лучи, выпущенные из A в вершины 2n-угольника, высекают 2n точек на окружности. 2n-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2n новых точек. Докажите, что их центр масс совпадает с центром масс старых 2n точек.

ВверхВниз   Решение


В городе Цветочном n площадей и m улиц  (mn + 1).  Каждая улица соединяет две площади и не проходит через другие площади. По существующей в городе традиции улица может называться либо Синей, либо Красной. Ежегодно в городе происходит переименование: выбирается площадь и переименовываются все выходящие из неё улицы. Докажите, что можно назвать улицы так, что переименованиями нельзя добиться одинаковых названий у всех улиц города.

ВверхВниз   Решение


В треугольнике ABC, где  AB = BC = 6  и   AC = 2,  проведены биссектриса AA1, высота BB1 и высота CC1.
Найдите площадь треугольника, образованного пересечением прямых:   а) AB, AA1 и BB1;   б) AA1, BB1 и CC1.

ВверхВниз   Решение


Известно, что  0 < a, b, c, d < 1  и  abcd = (1 – a)(1 – b)(1 – c)(1 – d).  Докажите, что   (a + b + c + d) – (a + c)(b + d) ≥ 1.

ВверхВниз   Решение


Дан равносторонний треугольник ABC. Найти множество всех таких точек D, что треугольники ABD и BCD - равнобедренные (отрезки AB и BC могут служить как основаниями, так и боковыми сторонами).

ВверхВниз   Решение


Первый рабочий за час делает на 2 детали больше, чем второй рабочий, и заканчивает работу над заказом, состоящим из 837 деталей, на 4 часа раньше, чем второй рабочий выполняет заказ, состоящий из 899 таких же деталей. Сколько деталей делает в час первый рабочий?

ВверхВниз   Решение


Медиана AD и высота CE равнобедренного треугольника ABC  (AB = BC)  пересекаются в точке P.
Найдите площадь треугольника ABC, если  CP = 5,  PE = 2.

ВверхВниз   Решение


Дан правильный 2n-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.

ВверхВниз   Решение


Точка M лежит вне окружности с центром O. Прямая OM пересекает окружность в точках A и B, прямая, проходящая через точку M, касается окружности в точке C, точка H – проекция точки C на AB, а перпендикуляр к AB, восставленный в точке O, пересекает окружность в точке P. Известно, что  MA = a  и  MB = b.  Найдите MO, MC, MH, MP и расположите найденные значения по возрастанию.

Вверх   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 590]      



Задача 115590

Темы:   [ Классические неравенства ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Точка M лежит вне окружности с центром O. Прямая OM пересекает окружность в точках A и B, прямая, проходящая через точку M, касается окружности в точке C, точка H – проекция точки C на AB, а перпендикуляр к AB, восставленный в точке O, пересекает окружность в точке P. Известно, что  MA = a  и  MB = b.  Найдите MO, MC, MH, MP и расположите найденные значения по возрастанию.

Прислать комментарий     Решение

Задача 116015

Темы:   [ Линейные неравенства и системы неравенств ]
[ Задачи с неравенствами. Разбор случаев ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Пятеро друзей скинулись на покупку. Могло ли оказаться так, что каждые два из них внесли менее одной трети общей стоимости?

Прислать комментарий     Решение

Задача 116214

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 8,9,10

Что больше:  20112011 + 20092009  или  20112009 + 20092011?

Прислать комментарий     Решение

Задача 116389

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Известно, что  0 < a, b, c, d < 1  и  abcd = (1 – a)(1 – b)(1 – c)(1 – d).  Докажите, что   (a + b + c + d) – (a + c)(b + d) ≥ 1.

Прислать комментарий     Решение

Задача 116579

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .