Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 2247]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дана неравнобокая трапеция ABCD. Точка A1 –
это точка пересечения описанной окружности треугольника BCD с прямой AC,
отличная от C. Аналогично определяются точки B1, C1, D1. Докажите, что A1B1C1D1 – тоже трапеция.
|
|
Сложность: 3+ Классы: 8,9,10
|
На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что MC = AC и NB = AB. Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.
В выпуклом четырёхугольнике
ABCD диагональ
AC делит пополам отрезок, соединяющий середины
сторон
BC и
AD . В каком отношении она делит диагональ
BD ?
В параллелограмме ABCD биссектрисы углов при стороне AD делят сторону BC точками M и N так, что BM : MN = 1 : 7. Найдите BC, если AB = 12.
Известно, что для вписанного в окружность четырёхугольника ABCD выполнено равенство AB : BC = AD : DC. Прямая, проходящая через вершину B и середину диагонали AC, пересекает окружность в точке M, отличной от B. Докажите, что AM = CD.
Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 2247]