Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 2247]
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD вписан в окружность, центр O которой лежит
внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.
Дан выпуклый четырёхугольник. Если провести в нём любую диагональ, он разделится на два равнобедренных треугольника. А если провести в нём обе диагонали сразу, он разделится на четыре равнобедренных треугольника. Обязательно ли этот четырёхугольник – квадрат?
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что IM : AB = IN : CD.
Докажите, что ABCD – трапеция или параллелограмм.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD без параллельных сторон вписан в окружность.
Для каждой пары касающихся окружностей, одна из которых имеет хорду AB,
а другая – хорду CD, отметим их точку касания X. Докажите,
что все такие точки X лежат на одной окружности.
Окружность касается сторон AB, BC, CD параллелограмма ABCD в точках K, L, M соответственно.
Докажите, что прямая KL делит пополам высоту параллелограмма, опущенную из вершины C на AB.
Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 2247]