Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Найдите длину кратчайшего пути по поверхности единичного правильного тетраэдра между серединами его противоположных рёбер.

Вниз   Решение


В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

ВверхВниз   Решение


Какие треугольники можно разрезать на три треугольника с равными радиусами описанных окружностей?

ВверхВниз   Решение


В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.

ВверхВниз   Решение


Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?

ВверхВниз   Решение


В треугольнике ABC медиана AK пересекает медиану BD в точке L. Найдите площадь треугольника ABC, если площадь четырёхугольника KCDL равна 5.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD  ∠B = ∠D,  а центр описанной окружности треугольника ABC, ортоцентр треугольника ADC и вершина B лежат на одной прямой. Докажите, что ABCD – параллелограмм.

ВверхВниз   Решение


Автор: Фольклор

Докажите, что в правильной треугольной пирамиде двугранный угол между боковыми гранями больше чем 60°.

ВверхВниз   Решение


Дан равносторонний треугольник АВС. Точка К – середина стороны АВ, точка М лежит на стороне ВС, причём  ВМ : МС = 1 : 3.  На стороне АС выбрана точка P так, что периметр треугольника РКМ – наименьший из возможных. В каком отношении точка Р делит сторону АС?

ВверхВниз   Решение


Маленький Петя подпилил все ножки у квадратной табуретки и четыре отпиленных кусочка потерял. Оказалось, что длины всех кусочков различны, и что табуретка после этого стоит на полу, пусть наклонно, но по-прежнему касаясь пола всеми четырьмя концами ножек. Дедушка решил починить табуретку, однако нашёл только три кусочка с длинами 8, 9 и 10 см. Какой длины может быть четвёртый кусочек?

ВверхВниз   Решение


На плоскости дано k точек, расположенных так, что на каждой прямой, соединяющей две из этих точек, лежит по крайней мере ещё одна из них. Доказать, что все k точек лежат на одной прямой.

ВверхВниз   Решение


Внутри треугольника ABC на биссектрисе его угла B выбрана такая точка M, что  AM = AC  и  ∠BCM = 30°.  Докажите, что  ∠AMB = 150°.

ВверхВниз   Решение


Числа a и b таковы, что   a³ – b³ = 2,  a5b5 ≥ 4.   Докажите, что  a² + b² ≥ 2.

ВверхВниз   Решение


Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 112]      



Задача 98444

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Трапеции (прочее) ]
[ Средняя линия треугольника ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

Прислать комментарий     Решение

Задача 101876

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Высота прямоугольного треугольника, опущенная на его гипотенузу, делит биссектрису острого угла в отношении  4 : 3,  считая от вершины.
Найдите величину этого угла.

Прислать комментарий     Решение

Задача 108075

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Вписанный угол равен половине центрального ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Под каким углом видна из вершины прямого угла прямоугольного треугольника проекция на гипотенузу вписанной окружности?

Прислать комментарий     Решение

Задача 115885

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вневписанные окружности ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 8,9,10,11

Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.

Прислать комментарий     Решение

Задача 116501

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9,10

Внутри треугольника ABC на биссектрисе его угла B выбрана такая точка M, что  AM = AC  и  ∠BCM = 30°.  Докажите, что  ∠AMB = 150°.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .