Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Даны отрезки a и b. Постройте такой отрезок x, что

$\displaystyle \root$4$\displaystyle \of$x = $\displaystyle \root$4$\displaystyle \of$a + $\displaystyle \root$4$\displaystyle \of$b.

Вниз   Решение


Автор: Фольклор

p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство:  p(a) – p(b) = 1.
Докажите, что a и b различаются на 1.

ВверхВниз   Решение


На какое наименьшее число тетраэдров можно разбить куб?

ВверхВниз   Решение


Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?

ВверхВниз   Решение


Последовательность чисел x0, x1, x2,...задается условиями

x0 = 1,        xn + 1 = axn    (n $\displaystyle \geqslant$ 0).

Найдите наибольшее число a, для которого эта последовательность имеет предел. Чему равен этот предел для такого a?

ВверхВниз   Решение


Докажите, что прямая, содержащая среднюю линию треугольника, параллельна стороне треугольника, а средняя линия треугольника равна половине этой стороны.

ВверхВниз   Решение


Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?

Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.

ВверхВниз   Решение


Автор: Бона М.

В турнире участвуют 2m команд. В первом туре встретились некоторые m пар команд, во втором – другие m пар.
Докажите, что после этого можно выбрать m команд, никакие две из которых ещё не играли между собой.

ВверхВниз   Решение


Докажите, что вписанный угол равен половине соответствующего центрального угла (или дуги) окружности.

ВверхВниз   Решение


Углы при основании AD трапеции ABCD равны 2$ \alpha$ и 2$ \beta$. Докажите, что трапеция описанная тогда и только тогда, когда $ {\frac{BC}{AD}}$ = tg$ \alpha$tg$ \beta$.

ВверхВниз   Решение


Из вершины A параллелограмма ABCD опущены высоты AM на BC и AN на CD. P – точка пересечения BN и DM. Докажите, что прямые AP и MN перпендикулярны.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 74]      



Задача 116075

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Теоремы Чевы и Менелая ]
[ Параллелограммы (прочее) ]
Сложность: 4
Классы: 9,10,11

Из вершины A параллелограмма ABCD опущены высоты AM на BC и AN на CD. P – точка пересечения BN и DM. Докажите, что прямые AP и MN перпендикулярны.

Прислать комментарий     Решение

Задача 53555

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 8,9

Диагонали выпуклого четырехугольника ABCD взаимно перпендикулярны. Через середины сторон AB и AD проведены прямые, перпендикулярные противоположным сторонам CD и CB соответственно. Докажите, что эти прямые и прямая AC имеют общую точку.

Прислать комментарий     Решение


Задача 55607

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Ортоцентр и ортотреугольник ]
Сложность: 5-
Классы: 8,9

Внутри треугольника ABC с углами $ \angle$A = 50o, $ \angle$B = 60o, $ \angle$C = 70o взята точка M, причём $ \angle$AMB = 110o, $ \angle$BMC = 130o. Найдите $ \angle$MBC.

Прислать комментарий     Решение


Задача 53376

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 2+
Классы: 8,9

Высоты треугольника ABC, проведённые из вершин A и C, пересекаются в точке M. Найдите ∠AMC, если  ∠A = 70°,  ∠C = 80°.

Прислать комментарий     Решение

Задача 55154

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 2+
Классы: 8,9

Докажите, что сумма высот треугольника меньше его периметра.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .