Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

В равнобедренном треугольнике боковая сторона равна 20, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.

Вниз   Решение


Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.

ВверхВниз   Решение


В треугольнике ABC известно, что AB=c , AC=b , а биссектриса, выходящая из угла A равна l . Найдите третью сторону треугольника.

ВверхВниз   Решение


Автор: Купцов Л.

Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности.

ВверхВниз   Решение


Даны три точки A,B,C . Где на прямой AC нужно выбрать точку M , чтобы сумма радиусов окружностей, описанных около треугольников ABM и CBM , была наименьшей?

ВверхВниз   Решение


В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D.

ВверхВниз   Решение


Дан равнобедренный треугольник ABC, в котором  ∠B = 120°.  На продолжениях сторон AB и CB за точку B взяли точки P и Q соответственно так, что лучи AQ и CP пересекаются под прямым углом. Докажите, что  ∠PQB = 2∠PCQ.

ВверхВниз   Решение


Даны точки A(4;1), B(- 8;0) и C(0; - 6). Составьте уравнение прямой, на которой лежит медиана AM треугольника ABC.

ВверхВниз   Решение


Доказать, что сумма цифр квадрата любого числа не может быть равна 1967.

ВверхВниз   Решение


Найдите все такие простые числа p, q, r и s, что их сумма – простое число. а числа  p² + qs  и  p² + qr  – квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.)

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты точки E и F так, что описанная около тетраэдра сфера пересекает прямую, проходящую через E и F , в точках M и N . Найдите длину отрезка EF , если ME:EF:FN=3:12:4 .

ВверхВниз   Решение


Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.

ВверхВниз   Решение


К двум окружностям w1 и w2, пересекающимся в точках A и B, проведена их общая касательная CD (C и D – точки касания соответственно, точка B ближе к прямой CD, чем A). Прямая, проходящая через A, вторично пересекает w1 и w2 в точках и L соответственно (A лежит между K и L ). Прямые KC и LD пересекаются в точке P. Докажите, что PB – симедиана треугольника KPL (прямая, симметричная медиане относительно биссектрисы).

Вверх   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 772]      



Задача 56690

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 8,9

Окружности S1 и S2 пересекаются в точках A и B, причем центр O окружности S1 лежит на S2. Прямая, проходящая через точку O, пересекает отрезок AB в точке P, а окружность S2 в точке C. Докажите, что точка P лежит на поляре точки C относительно окружности S1.
Прислать комментарий     Решение


Задача 78124

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5
Классы: 10,11

Три равные окружности касаются друг друга. Из произвольной точки окружности, касающейся внутренним образом этих окружностей, проведены касательные к ним. Доказать, что сумма длин двух касательных равна длине третьей.
Прислать комментарий     Решение


Задача 116089

Темы:   [ Общая касательная к двум окружностям ]
[ Преобразования подобия (прочее) ]
[ Пересекающиеся окружности ]
[ Вспомогательная окружность ]
Сложность: 5
Классы: 10,11

К двум окружностям w1 и w2, пересекающимся в точках A и B, проведена их общая касательная CD (C и D – точки касания соответственно, точка B ближе к прямой CD, чем A). Прямая, проходящая через A, вторично пересекает w1 и w2 в точках и L соответственно (A лежит между K и L ). Прямые KC и LD пересекаются в точке P. Докажите, что PB – симедиана треугольника KPL (прямая, симметричная медиане относительно биссектрисы).

Прислать комментарий     Решение

Задача 54194

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
Сложность: 2+
Классы: 8,9

Прямая, проходящая через точку M, удалённую от центра окружности радиуса 10 на расстояние, равное 26, касается окружности в точке A. Найдите AM.

Прислать комментарий     Решение

Задача 35772

Темы:   [ Касательные к сферам ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 2+
Классы: 10,11

В пространстве дана плоскость П и точки A и B по одну сторону от П (AB не параллельно П). Рассматриваются сферы, проходящие через точки A и B, касающиеся плоскости П. Докажите, что точки касания этих сфер и плоскости П лежат на одной окружности.
Прислать комментарий     Решение


Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .