ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Ивлев Ф.

Дана неравнобокая трапеция ABCD  (AB || CD).  Окружность, проходящая через точки A и B, пересекает боковые стороны трапеции в точках P и Q, а диагонали – в точках M и N. Докажите, что прямые PQ, MN и CD пересекаются в одной точке.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 122]      



Задача 110199

Темы:   [ Вспомогательная окружность ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 9,10,11

AA1 и BB1 – высоты остроугольного неравнобедренного треугольника ABC. Известно, что отрезок A1B1 пересекает среднюю линию, параллельную AB, в точке C'. Докажите, что отрезок CC' перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116162

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные четырехугольники (прочее) ]
[ Радикальная ось ]
Сложность: 4
Классы: 10,11

Автор: Ивлев Ф.

Дана неравнобокая трапеция ABCD  (AB || CD).  Окружность, проходящая через точки A и B, пересекает боковые стороны трапеции в точках P и Q, а диагонали – в точках M и N. Докажите, что прямые PQ, MN и CD пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116249

Темы:   [ Четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Радикальная ось ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Дан такой выпуклый четырехугольник ABCD, что  AB = BC  и  AD = DC.  Точки K, L и M – середины отрезков AB, CD и AC соответственно. Перпендикуляр, проведенный из точки A к прямой BC, пересекается с перпендикуляром, проведенным из точки C к прямой AD, в точке H. Докажите, что прямые KL и HM перпендикулярны.

Прислать комментарий     Решение

Задача 116641

Темы:   [ Вневписанные окружности ]
[ Вспомогательная окружность ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

Автор: Шмаров В.

Периметр треугольника ABC равен 4. На лучах AB и AC отмечены точки X и Y так, что  AX = AY = 1.  Отрезки BC и XY пересекаются в точке M. Докажите, что периметр одного из треугольников ABM и ACM равен 2.

Прислать комментарий     Решение

Задача 64617

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Радикальная ось ]
[ Прямая Симсона ]
Сложность: 4+
Классы: 10,11

Даны две окружности и три прямые, каждая прямая высекает на окружностях хорды равной длины. Точки пересечения прямых образуют треугольник.
Докажите, что описанная окружность этого треугольника проходит через середину отрезка между центрами данных окружностей.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .