Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при вычеркивании одной (не первой) цифры уменьшается в целое число раз.

Вниз   Решение


Пусть a и n – натуральные числа, большие 1. Докажите, что если число  an + 1  простое, то a чётно и  n = 2k.
(Числа вида  fk = 22k + 1  называются числами Ферма.)

ВверхВниз   Решение


Докажите неравенство для натуральных  n > 1:  

ВверхВниз   Решение


Докажите, что 3, 5 и 7 являются единственной тройкой простых чисел-близнецов.

ВверхВниз   Решение


Обязательно ли треугольник равнобедренный, если центр его вписанной окружности одинаково удален от середин двух сторон?

ВверхВниз   Решение


На концах клетчатой полоски 1 × 20 стоит по шашке. За ход разрешается сдвинуть любую шашку в направлении другой на одну или на две клетки. Перепрыгивать шашкой через шашку нельзя. Проигрывает тот, кто не может сделать ход.

ВверхВниз   Решение


Пусть P(x) – многочлен ненулевой степени с целыми коэффициентами. Могут ли все числа P(0), P(1), P(2), ... быть простыми?

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

ВверхВниз   Решение


а) Двое по очереди ставят слонов в клетки шахматной доски. Очередным ходом надо побить хотя бы одну небитую клетку. Слон бьет и клетку, на которой стоит. Проигрывает тот, кто не может сделать ход.

б) Та же игра, но с ладьями.

ВверхВниз   Решение


Докажите, что числа Ферма  fn = 22n + 1  при  n > 1  не представимы в виде суммы двух простых чисел.

ВверхВниз   Решение


В каждой клетке доски 11 × 11 стоит шашка. За ход разрешается снять с доски любое количество подряд идущих шашек либо из одного вертикального, либо из одного горизонтального ряда. Выигрывает снявший последнюю шашку.

ВверхВниз   Решение


Автор: Фомин С.В.

Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений), а) проигрывает; б) выигрывает. Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?

ВверхВниз   Решение


Докажите неравенство  2m+n–2mn,  где m и n – натуральные числа.

ВверхВниз   Решение


Известно, что некоторая точка M равноудалена от двух пересекающихся прямых m и n . Докажите, что ортогональная проекция точки M на плоскость прямых m и n лежит на биссектрисе одного из углов, образованных прямыми m и n .

ВверхВниз   Решение


У Миши есть 1000 одинаковых кубиков, у каждого из которых одна пара противоположных граней белая, вторая – синяя, третья – красная. Он собрал из них большой куб 10×10×10, прикладывая кубики друг к другу одноцветными гранями. Докажите, что у большого куба есть одноцветная грань.

Вверх   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1015]      



Задача 111241

Тема:   [ Задачи с ограничениями ]
Сложность: 3
Классы: 6,7,8

Новогодняя гирлянда, висящая вдоль школьного коридора, состоит из красных и синих лампочек. Рядом с каждой красной лампочкой обязательно есть синяя. Какое наибольшее количество красных лампочек может быть в этой гирлянде, если всего лампочек 50?

Прислать комментарий     Решение

Задача 116256

Темы:   [ Комбинаторика (прочее) ]
[ Раскраски ]
Сложность: 3
Классы: 8,9

У Миши есть 1000 одинаковых кубиков, у каждого из которых одна пара противоположных граней белая, вторая – синяя, третья – красная. Он собрал из них большой куб 10×10×10, прикладывая кубики друг к другу одноцветными гранями. Докажите, что у большого куба есть одноцветная грань.

Прислать комментарий     Решение

Задача 60345

Темы:   [ Правило произведения ]
[ Формула включения-исключения ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Пассажир оставил вещи в автоматической камере хранения, а когда пришёл получать вещи, выяснилось, что он забыл номер. Он только помнит, что в номере были числа 23 и 37. Чтобы открыть камеру, нужно правильно набрать пятизначный номер. Каково наименьшее количество номеров нужно перебрать, чтобы наверняка открыть камеру?

Прислать комментарий     Решение

Задача 35176

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Найдите число нулей, на которое оканчивается число  11100 – 1.

Прислать комментарий     Решение

Задача 30430

Темы:   [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8

В стране из каждого города выходит 100 дорог и от каждого города можно добраться до любого другого. Одну дорогу закрыли на ремонт.
Докажите, что и теперь от каждого города можно добраться до любого другого.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1015]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .