Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Даны два бикфордова шнура, каждый из которых горит ровно минуту, если его поджечь с одного конца (но сгорать может неравномерно).
Как с помощью этих шнуров отмерить 45 секунд? (Поджигать шнур можно с любого из двух концов.)

Вниз   Решение


Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета на расстоянии 2004 м.

ВверхВниз   Решение


Можно ли в тетрадном листке вырезать такую дырку, через которую пролез бы человек?

ВверхВниз   Решение


Докажите, что прямая, проходящая через середины оснований трапеции, разбивает её на две равновеликие части.

ВверхВниз   Решение


В треугольнике ABC сторона AC наименьшая. На сторонах AB и CB взяты точки K и L соответственно, причём  KA = AC = CL.  Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC.

ВверхВниз   Решение


На стороне AC остроугольного треугольника ABC выбраны точки M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.

ВверхВниз   Решение


Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q.
Докажите, что  PQAB.

ВверхВниз   Решение


Найдите геометрическое место точек пересечения высот треугольников, у которых даны середина одной стороны и основания высот, опущенных на две другие.

ВверхВниз   Решение


Два противоположных ребра треугольной пирамиды равны a , два других противоположных ребра равны b , два оставшихся ребра равны c . Найдите радиус описанной сферы.

ВверхВниз   Решение


Рассматриваются всевозможные квадратные трёхчлены вида  x² + px + q,  где p, q – целые,  1 ≤ p ≤ 1997,  1 ≤ q ≤ 1997.
Каких трёхчленов среди них больше: имеющих целые корни или не имеющих действительных корней?

ВверхВниз   Решение


В выпуклом шестиугольнике ABCDEF отрезки AB и CF, CD и BE, EF и AD попарно параллельны.
Докажите, что площади треугольников ACE и BFD равны.

ВверхВниз   Решение


В треугольнике ABC известно, что  BC = 2AC.  На стороне BC выбрана точка D, для которой  ∠CAD = ∠B. Прямая AD пересекает биссектрису внешнего угла при вершине C в точке E. Докажите, что  AE = AB.

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E, AB = BC, DB — биссектриса угла D, $ \angle$ABC = 100o, $ \angle$BEA = 70o. Найдите угол CAD.

ВверхВниз   Решение


На биссектрисе данного угла фиксирована точка. Рассматриваются всевозможные равнобедренные треугольники, у которых вершина находится в этой точке, а концы оснований лежат на разных сторонах этого угла. Найти геометрическое место середин оснований таких треугольников.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD стороны равны соответственно:   AB = 10,  BC = 14,  CD = 11,  AD = 5.   Найдите угол между его диагоналями.

Вверх   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 449]      



Задача 116382

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теорема косинусов ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ABCD стороны равны соответственно:   AB = 10,  BC = 14,  CD = 11,  AD = 5.   Найдите угол между его диагоналями.

Прислать комментарий     Решение

Задача 54707

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Найдите косинусы углов трапеции с основаниями 3 и 7 и боковыми сторонами 2 и 5.

Прислать комментарий     Решение


Задача 55264

Темы:   [ Теорема о сумме квадратов диагоналей ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Прислать комментарий     Решение


Задача 52908

Темы:   [ Касающиеся окружности ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Данной окружности касаются две равных меньших окружностей — одна изнутри, другая извне, причём дуга между точками касания содержит 60o. Радиусы меньших окружностей равны r, радиус большей окружности равен R. Найдите расстояние между центрами меньших окружностей.

Прислать комментарий     Решение


Задача 54702

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

На продолжении боковой стороны AB равнобедренного треугольника ABC за вершину A взята точка D, причём AD = 2AB. Известно, что $ \angle$BAC = 120o. Докажите, что треугольник BDC — равнобедренный.

Прислать комментарий     Решение


Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 449]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .