Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Автор: Вавилов В.

Три прямоугольных треугольника расположены в одной полуплоскости относительно данной прямой l так, что один из катетов каждого треугольника лежит на этой прямой. Известно, что существует прямая, параллельная l, пересекающая треугольники по равным отрезкам. Докажите, что если расположить треугольники в одной полуплоскости относительно прямой l так, чтобы другие их катеты лежали на прямой l, то также найдётся прямая, параллельная l , пересекающая их по равным отрезкам.

Вниз   Решение


Три равных треугольника разрезали по разноимённым медианам (см. рис. 1). Можно ли из получившихся шести треугольников сложить один треугольник?
   
Рис. 1

ВверхВниз   Решение


Существуют ли такие натуральные x и y, что  x4y4 = x³ + y³?

ВверхВниз   Решение


Известно, что квадратные уравнения  ax² + bx + c = 0  и  bx² + cx + a = 0  (a, b и c – отличные от нуля числа) имеют общий корень.
Найдите его.

ВверхВниз   Решение


На клетчатой бумаге нарисован квадрат со стороной 5 клеток. Его требуется разбить на 5 частей одинаковой площади, проводя отрезки внутри квадрата только по линиям сетки. Может ли оказаться так, что суммарная длина проведенных отрезков не превосходит 16 клеток?

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD известно, что BCD = 80o , ACB = 50o и ABD = 30o . Найдите угол ADB .

ВверхВниз   Решение


Автор: Фольклор

Дан угол с вершиной O и окружность, касающаяся его сторон в точках A и B. Луч с началом в точке A, параллельный OB, пересекает окружность в точке C. Отрезок OC пересекает окружность в точке E. Прямые AE и OB пересекаются в точке K. Докажите, что OK = KB.

ВверхВниз   Решение


Известно, что сумма любых двух из трёх квадратных трёхчленов  x² + ax + bx² + cx + dx² + ex + f  не имеет корней.
Может ли сумма всех этих трёхчленов иметь корни?

ВверхВниз   Решение


Вписанные окружности граней SBC , SAC и SAB треугольной пирамиды SABC попарно пересекаются и имеют радиусы , и соответственно. Точка K является точкой касания окружностей со стороной SA , причём SK=7 . Найдите длину отрезка AK , периметр и радиус вписанной окружности треугольника ABC .

ВверхВниз   Решение


Дан квадратный трёхчлен  f(x) = x² + ax + b.  Известно, что для любого вещественного x существует такое вещественное y, что   f(y) = f(x) + y.  Найдите наибольшее возможное значение a.

ВверхВниз   Решение


Для заданных значений a, b, c и d оказалось, что графики функций    и    имеют ровно одну общую точку. Докажите, что графики функций    и    также имеют ровно одну общую точку.

ВверхВниз   Решение


В неравнобедренном треугольнике ABC точки H и M – точки пересечения высот и медиан соответственно. Через вершины A, B и C проведены прямые, перпендикулярные прямым AM, BM, CM соответственно. Докажите, что точка пересечения медиан треугольника, образованного проведёнными прямыми, лежит на прямой MH.

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра AC и BD взаимно перпендикулярны, AB=BD=AD=a , середина ребра AC равноудалена от плоскостей ABD и BCD , угол между ребром AC и гранью CBD равен arcsin . Найдите ребро CD , угол CAD и угол между ребром BD и гранью ACD .

ВверхВниз   Решение


На рисунке изображены графики трёх квадратных трёчленов.
Можно ли подобрать такие числа a, b и c, чтобы это были графики трёхчленов  ax² + bx + c,  bx² + cx + a  и  cx² + ax + b?

ВверхВниз   Решение


На оси Ox произвольно расположены различные точки  X1, ..., Xnn ≥ 3.  Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось Ox в данных точках (и не пересекающие ееё в других точках). Пусть  y = f1(x),  ...,  y = fm(x)  – соответствующие параболы. Докажите, что парабола  y = f1(x) + ... + fm(x)  пересекает ось Ox в двух точках.

ВверхВниз   Решение


Один градус шкалы Цельсия равен 1,8 градусов шкалы Фаренгейта, при этом 0° по Цельсию соответствует 32° по шкале Фаренгейта.
Может ли температура выражаться одинаковым числом градусов как по Цельсию, так и по Фаренгейту?

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC взяты точки M и K соответственно так, что  SKMC + SKAC = SABC.
Докажите, что все такие прямые MK проходят через одну точку.

ВверхВниз   Решение


На плоскости даны оси координат с одинаковым, но не обозначенным масштабом и график функции

y= sin x, x(0).

Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: а) α() ; б) α(0;) ?

ВверхВниз   Решение


На сторонах угла взяты точки A, B. Через середину M отрезка AB проведены две прямые, одна из которых пересекает стороны угла в точках A1, B1, другая – в точках A2 , B2. Прямые A1B2 и A2B1 пересекают AB в точках P и Q. Докажите, что M – середина PQ.

ВверхВниз   Решение


Для некоторых натуральных чисел a, b, c и d выполняются равенства  a/c = b/d = ab+1/cd+1.  Докажите, что  a = c  и  b = d.

ВверхВниз   Решение


Автор: Фольклор

В классе находятся учитель и несколько учеников. Известно, что возраст учителя на 24 года больше среднего возраста учеников и на 20 лет больше среднего возраста всех присутствующих в классе. Сколько учеников находится в классе?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 168]      



Задача 116442

Темы:   [ Средние величины ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

В классе находятся учитель и несколько учеников. Известно, что возраст учителя на 24 года больше среднего возраста учеников и на 20 лет больше среднего возраста всех присутствующих в классе. Сколько учеников находится в классе?

Прислать комментарий     Решение

Задача 116811

Темы:   [ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?

Прислать комментарий     Решение

Задача 61322

 [Арифметико-геометрическое среднее]
Темы:   [ Средние величины ]
[ Рекуррентные соотношения ]
[ Предел последовательности, сходимость ]
[ Лемма о вложенных отрезках ]
Сложность: 3+
Классы: 10,11

Пусть a и b – два положительных числа, причём  a < b.  Построим по этим числам две последовательности {an} и {bn} по правилам:

a0 = a,   b0 = b,   an+1 = ,   bn+1 =   (n ≥ 0).
Докажите, что обе эти последовательности имеют один и тот же предел.
Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается  μ(a, b).

Прислать комментарий     Решение

Задача 61323

 [Арифметико-гармоническое среднее]
Темы:   [ Средние величины ]
[ Предел последовательности, сходимость ]
[ Рекуррентные соотношения (прочее) ]
[ Лемма о вложенных отрезках ]
Сложность: 3+
Классы: 10,11

Пусть a и b – два положительных числа, и  a < b.  Определим две последовательности чисел {an} и {bn} формулами:

a0 = a,   b0 = b,   an+1 = ,   bn+1 =   (n ≥ 0).

  а) Докажите, что обе эти последовательности имеют общий предел.
Этот предел называется арифметико-гармоническим средним чисел a и b.
  б) Докажите, что этот предел совпадает со средним геометрическим чисел a и b.
  в) Пусть  a = 1,  b = k.  Как последовательность {bn} связана с последовательностью {xn} из задачи 61299?

Прислать комментарий     Решение

Задача 61324

 [Геометрико-гармоническое среднее]
Темы:   [ Средние величины ]
[ Предел последовательности, сходимость ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 10,11

Назовём геометрико-гармоническим средним чисел a и b общий предел последовательностей {an} и {bn}, построенных по правилу

a0 = a,   b0 = b,   an+1 = ,   bn+1 =   (n ≥ 0).
Обозначим его через  ν(a, b).  Докажите, что величина  ν(a, b)  связана с  μ(a, b)  (см. задачу 61322) равенством  ν(a, b)·μ(1/a, 1/b) = 1.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 168]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .