|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Толя выложил в ряд 101 монету достоинством 1, 2 и 3 копейки. Оказалось, что между каждыми двумя копеечными монетами лежит хотя бы одна монета, между каждыми двумя двухкопеечными монетами лежат хотя бы две монеты, а между каждыми двумя трёхкопеечными монетами лежат хотя бы три монеты. Сколько трёхкопеечных монет могло быть у Толи? Решить в целых числах уравнение xy + 3x – 5y = – 3. Все боковые рёбра пирамиды равны b , а высота равна h . Найдите радиус описанной около основания окружности. Докажите неравенство для положительных значений переменных: Верно ли, что сумма внутренних двугранных углов при основании треугольной пирамиды всегда меньше суммы внешних? Найдите наибольшее значение функции y = 14x-7tgx-3,5π +11 на отрезке [- В квадрате 7×7 клеток закрасьте некоторые клетки так, чтобы в каждой строке и в каждом столбце оказалось ровно по три закрашенных клетки. Сфера радиуса r касается всех рёбер треугольной пирамиды. Центр этой сферы лежит на высоте пирамиды. Докажите, что пирамида правильная и найдите её высоту, если известно, что центр сферы удален от вершины пирамиды на расстояние r На плоской горизонтальной площадке стоят пять прожекторов, каждый из которых испускает лазерный луч под одним из двух острых углов α или β к площадке и может вращаться лишь вокруг вертикальной оси, проходящей через вершину луча. Известно, что любые четыре из этих прожекторов можно повернуть так, что все четыре испускаемых ими луча пересекутся в одной точке. Обязательно ли можно так повернуть все пять прожекторов, чтобы все пять лучей пересеклись в одной точке? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 71]
На плоскости имеется 1983 точки и окружность единичного радиуса.
Выпуклый $n$-угольник ($n$ > 4) обладает таким свойством: если диагональ отсекает от него треугольник, то этот треугольник равнобедренный. Докажите, что среди любых четырёх сторон этого n-угольника есть хотя бы две равных.
На плоской горизонтальной площадке стоят пять прожекторов, каждый из которых испускает лазерный луч под одним из двух острых углов α или β к площадке и может вращаться лишь вокруг вертикальной оси, проходящей через вершину луча. Известно, что любые четыре из этих прожекторов можно повернуть так, что все четыре испускаемых ими луча пересекутся в одной точке. Обязательно ли можно так повернуть все пять прожекторов, чтобы все пять лучей пересеклись в одной точке?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 71] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|