ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета? Через вершину A тетраэдра ABCD проведена плоскость, касательная к описанной около него сфере. Докажите, что линии пересечения этой плоскости с плоскостями граней ABC, ACD и ABD образуют шесть равных углов тогда и только тогда, когда AB·CD = AC·BD = AD·BC. В правильной четырёхугольной пирамиде апофема равна стороне основания. Внутри пирамиды расположены два шара: шар радиуса r касается всех боковых граней; шар радиуса 2r касается основания и двух смежных боковых граней; оба шара касаются друг друга внешним образом. Найдите апофему этой пирамиды. Четырёхугольник ABCD вписан в окружность. Перпендикуляр, опущенный из вершины C на биссектрису угла ABD, пересекает прямую AB в точке C1; перпендикуляр, опущенный из вершины B на биссектрису угла ACD, пересекает прямую CD в точке B1. Докажите, что B1C1 || AD.
Сторона основания ABC правильной треугольной пирамиды
ABCD равна 3, двугранный угол между боковой гранью
и плоскостью основания пирамиды равен arccos КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР трёхзначные числа, разные буквы обозначают различные цифры.)
В сферу радиуса Из точки A проведены к окружности две касательные (M и N – точки касания) и секущая, пересекающая эту окружность в точках B и C, а хорду MN – в точке P, AB : BC = 2 : 3. Найдите AP : PC. Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA. Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:
|
Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 401]
Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что KS || AC и LT || AB. Докажите, что точки P, Q, S и T лежат на одной окружности.
Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если AB = c, AM = m и AN = n.
В круге провели несколько (конечное число) различных хорд так, что каждая из них проходит через середину какой – либо другой из проведённых хорд. Докажите, что все эти хорды являются диаметрами круга.
Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:
Найдите геометрическое место середин всех хорд, проходящих через данную точку окружности.
Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 401]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке