|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него. На прямой имеется 2n+1 отрезок. Любой отрезок пересекается по крайней мере с n другими. Докажите, что существует отрезок, пересекающийся со всеми остальными. 2003 доллара разложили по кошелькам, а кошельки разложили по карманам. Известно, что всего кошельков больше, чем долларов в любом кармане. Верно ли, что карманов больше, чем долларов в каком-нибудь кошельке? (Класть кошельки один в другой не разрешается.) С помощью циркуля и линейки постройте прямую, равноудаленную от трёх данных точек.
Докажите, что каждое целое число A представимо в виде
A = a0 + 2a1 + 22a2 +...+ 2nan,
где каждое из чисел ak = 0,
1 или -1 и
akak + 1 = 0 для всех
0 Дан трёхгранный угол. Рассмотрим три плоскости, содержащие его грани. Эти плоскости разбивают пространство на восемь трёхгранных углов. а) Найдите плоские углы всех образовавшихся трёхгранных углов, если плоские углы исходного трёхгранного угла равны x , y и z . б) Найдите двугранные углы всех образовавшихся трёхгранных углов, если двугранные углы исходного трёхгранного угла равны α , β и γ . Продолжение биссектрисы AD треугольника ABC пересекает описанную окружность в точке M. Пусть Q - центр окружности, вписанной в треугольник ABC. Докажите, что треугольники MBQ и MCQ - равнобедренные.
Пятеро молодых рабочих получили на всех зарплату - 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 4260]
b) Докажите, что среди жителей Москвы найдутся десять тысяч, празднующих день рождения в один и тот же день.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 4260] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|