Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Докажите, что площадь треугольника равна его полупериметру, умноженному на радиус вписанной окружности.

Вниз   Решение


Сумма сторон AB и BC треугольника ABC равна 11,  угол B равен 60°, радиус вписанной окружности равен  .  Известно также, что сторона AB больше стороны BC. Найдите высоту треугольника, опущенную из вершины A.

ВверхВниз   Решение


Решите уравнение sin4x + cos4x = a.

ВверхВниз   Решение


Докажите неравенство:  2n > n.

ВверхВниз   Решение


Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках М и N так, что АВ – биссектриса треугольника МАN. Докажите, что отношение отрезков ВМ и BN равно отношению радиусов окружностей.

ВверхВниз   Решение


Рита, Люба и Варя решали задачи. Чтобы дело шло быстрее, они купили конфет и условились, что за каждую решённую задачу девочка, решившая её первой, получает четыре конфеты, решившая второй  — две, а решившая последней  — одну. Девочки говорят, что каждая из них решила все задачи и получила 20 конфет, причём одновременных решений не было. Они ошибаются. Как вы думаете, почему?

ВверхВниз   Решение


Даны три попарно перпендикулярные прямые. Четвёртая прямая образует с данными углы α , β , γ соответственно. Докажите, что

cos 2α + cos 2β + cos 2γ = 1.

ВверхВниз   Решение


В множестве, состоящем из n элементов, выбрано 2n–1 подмножеств, каждые три из которых имеют общий элемент.
Докажите, что все эти подмножества имеют общий элемент.

ВверхВниз   Решение


Ребус-система. Расшифруйте числовой ребус — систему
rebus-sistema
(разным буквам соответствуют разные цифры, а одинаковым — одинаковые).

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Точка X лежит на прямой AB, но не на отрезке AB. Докажите, что длины всех касательных, проведенных из точки X к окружностям, равны.

ВверхВниз   Решение


Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке?

ВверхВниз   Решение


Докажите, что степень точки P относительно окружности S равна d2 - R2, где R — радиус Sd — расстояние от точки P до центра S.

ВверхВниз   Решение


Каждая сторона в треугольнике ABC разделена на 8 равных отрезков. Сколько существует различных треугольников с вершинами в точках деления (точки A, B, C не могут быть вершинами треугольников), у которых ни одна сторона не параллельна ни одной из сторон треугольника ABC?

ВверхВниз   Решение


Параллелограмм с периметром, равным 44, разделен диагоналями на четыре треугольника. Разность между периметрами двух смежных треугольников
равна 6. Найдите стороны параллелограмма.

ВверхВниз   Решение


Является ли число 12345678926 квадратом?

ВверхВниз   Решение


В течение года цены на штрюдели два раза поднимали на 50%, а перед Новым Годом их стали продавать за полцены.
Сколько стоит сейчас один штрюдель, если в начале года он стоил 80 рублей?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 5999]      



Задача 32092

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 2
Классы: 5,6,7

В каждой клетке прямоугольной таблицы размером M×K написано число. Сумма чисел в каждой строке и в каждом столбце равна 1.
Докажите, что  M = K.

Прислать комментарий     Решение

Задача 32830

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2
Классы: 7,8

В течение года цены на штрюдели два раза поднимали на 50%, а перед Новым Годом их стали продавать за полцены.
Сколько стоит сейчас один штрюдель, если в начале года он стоил 80 рублей?

Прислать комментарий     Решение

Задача 32838

Тема:   [ Задачи на движение ]
Сложность: 2
Классы: 7,8

Вадим и Лёша спускались с горы. Вадим шёл пешком, а Лёша съезжал на лыжах в семь раз быстрее Вадима. На полпути Лёша упал, сломал лыжи и ногу и пошёл в два раза медленней Вадима. Кто первым спустится с горы?

Прислать комментарий     Решение

Задача 33134

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Доказать: сумма
  а) любого количества чётных слагаемых чётна;
  б) чётного количества нечётных слагаемых чётна;
  в) нечётного количества нечётных слагаемых нечётна.

Прислать комментарий     Решение

Задача 33135

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Доказать: произведение
  а) двух нечётных чисел нечётно;
  б) чётного числа с любым целым числом чётно.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 5999]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .