|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В квадрат ABCD со стороной a вписана окружность, которая касается стороны CD в точке E. Две окружности пересекаются в точках A и B. К этим окружностям проведена общая касательная, которая касается окружностей в точках C и D. Докажите, что прямая AB делит отрезок CD пополам. Каждое ребро выпуклого многогранника параллельно перенесли на некоторый вектор так, что ребра образовали каркас нового выпуклого многогранника. Обязательно ли он равен исходному? В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что если ∠A = 45°, то B1C1 – диаметр окружности девяти точек треугольника ABC. B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник. Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел a и b ( a>b ) хотя бы одно из чисел a+b или a-b тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми. На доске написаны числа 1, 2, 3, ..., 1989. Разрешается стереть любые два числа и написать вместо них разность этих чисел. В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°. Докажите, что sin( Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.) Существуют ли нецелые числа x и y, для которых {x}{y} = {x + y}? Наибольший угол остроугольного треугольника в пять раз больше наименьшего. В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники? Из точки M, расположенной вне окружности на расстоянии Из круга S радиуса 1 вырезали круг S' радиуса 1/2, граница которого проходит через центр исходного круга. Определите, где находится центр тяжести полученной фигуры F. На квадратном поле 10*10 девять клеток 1*1 поросли бурьяном. После этого бурьян может распространиться на клетку, у которой не менее двух соседних клеток уже поросли бурьяном. Докажите, что тем не менее бурьян не сможет распространиться на все клетки. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 290]
На каждом километре шоссе между сёлами Ёлкино и Палкино стоит столб с табличкой, на одной стороне которой написано, сколько километров до Ёлкино, а на другой – до Палкино. Боря заметил, что на каждом столбе сумма всех цифр равна 13. Каково расстояние от Ёлкино до Палкино?
а) Однажды одним из написанных чисел (каким неизвестно) оказалось 941664/665857. Каким в этот момент было другое число? б) Будет ли когда-нибудь написано число 35/24?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 290] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|