ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Через точку на стороне четырёхугольника проведена прямая, параллельная диагонали, до пересечения с соседней стороной четырёхугольника. Через полученную точку проведена прямая, параллельная другой диагонали, и т.д. Докажите, что пятая точка, полученная таким способом, совпадет с исходной.
В треугольнике ABC известно, что
Можно ли нарисовать эту картинку (см. рис.), не отрывая карандаша от бумаги и проходя по каждой линии по одному разу?
С натуральным числом K производится следующая операция: оно представляется в виде произведения простых сомножителей K = p1p2...pn; затем вычисляется сумма p1 + p2 + ... + pn + 1. С полученным числом производится то же самое, и т.д.
Две окружности пересекаются в точках A и B. Прямая, проходящая через точку A, пересекает окружности в точках M и N, отличных от A, а параллельная ей прямая, проходящая через B, — соответственно в точках P и Q, отличных от B. Докажите, что MN = PQ.
На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам? Докажите, что никакой выпуклый многоугольник нельзя разрезать на 100 различных правильных треугольников.
Из квадрата клетчатой бумаги размером
16×16
вырезали одну клетку. Докажите, что полученную фигуру можно
разрезать на "уголки'' из трех клеток.
Дан мешок сахарного песка, чашечные весы и гирька в 1 г. Можно ли за 10 взвешиваний отмерить 1 кг сахара? Рассматривается последовательность 1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ... Существует ли арифметическая прогрессия
Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм. Окружность радиуса r касается сторон многоугольника
в точках
A1,..., An, причем длина стороны, на которой лежит
точка Ai, равна ai. Точка X удалена от центра окружности на
расстояние d. Докажите, что
a1XA12 + ... + anXAn2 = P(r2 + d2),
где P — периметр многоугольника.
Пусть CK — биссектриса треугольника ABC и AC > BC. Докажите, что угол AKC — тупой.
а) Торт имеет форму треугольника, в котором один угол в 3 раза больше другого. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку? б) Та же задача для торта в форме тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов. На окружности длины 15 выбрано n точек, так что для каждой имеется ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояние измеряется по окружности). Докажите, что n делится на 10. Можно ли поверхность единичного куба оклеить четырьмя треугольниками площади 1,5? Окружности ω1 и ω2 пересекаются в точках A и B. Точки K1 и K2 на ω1 и ω2 соответственно таковы, что K1A касается ω2, а K2A касается ω1. Описанная окружность треугольника K1BK2 пересекает вторично прямые AK1 и AK2 в точках L1 и L2 соответственно. Докажите, что точки L1 и L2 равноудалены от прямой AB. Существует ли такое N и такие N – 1 бесконечных арифметических прогрессий с разностями 2, 3, 4, ..., N, что каждое натуральное число принадлежит хотя бы одной из этих прогрессий? Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что 2MN < AB.
В равнобедренном треугольнике ABC (AB = BC) медианы AD и
EC пересекаются в точке O. Отношение радиуса окружности,
вписанной в треугольник AOC, к радиусу окружности, вписанной в
четырёхугольник ODBE, равно
Докажите, что если внутри треугольника ABC существует точка D, для которой AD = AB, то AB < AC.
В некоторой школе каждый школьник знаком с 32 школьницами, а каждая школьница – с 29 школьниками. Кого в школе больше: школьников или школьниц и во сколько раз? Может ли сумма 1000 последовательных нечётных чисел быть седьмой степенью натурального числа? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 133]
Докажите, что в любой арифметической прогрессии, состоящей из натуральных чисел, найдутся два члена с одинаковой суммой цифр.
Может ли сумма 1000 последовательных нечётных чисел быть седьмой степенью натурального числа?
Первый член бесконечной арифметической прогрессии из натуральных чисел равен 1.
Рассматривается последовательность 1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ... Существует ли арифметическая прогрессия
Существует ли такое N и такие N – 1 бесконечных арифметических прогрессий с разностями 2, 3, 4, ..., N, что каждое натуральное число принадлежит хотя бы одной из этих прогрессий?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 133]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке